Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions

被引:570
作者
Lee, Jongwon [1 ]
Tymchenko, Mykhailo [1 ]
Argyropoulos, Christos [1 ]
Chen, Pai-Yen [1 ]
Lu, Feng [1 ]
Demmerle, Frederic [2 ]
Boehm, Gerhard [2 ]
Amann, Markus-Christian [2 ]
Alu, Andrea [1 ]
Belkin, Mikhail A. [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
基金
美国国家科学基金会;
关键词
OPTIMIZED 2ND-HARMONIC GENERATION; QUANTUM; GAAS;
D O I
10.1038/nature13455
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems-but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers(1-7). In a different context, plasmonic metasurfaces (thin conductor-dielectric composite materials) have been proposed as a way of strongly enhancing light-matter interaction and realizing ultrathin planarized devices with exotic wave properties(8-11). Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 x 10(4) picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far(12-15). The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up-and down-conversions, phase conjugation and all-optical control and tunability over a surface.
引用
收藏
页码:65 / U389
页数:11
相关论文
共 33 条
  • [21] Time reversal and negative refraction
    Pendry, J. B.
    [J]. SCIENCE, 2008, 322 (5898) : 71 - 73
  • [22] Controlling electromagnetic fields
    Pendry, J. B.
    Schurig, D.
    Smith, D. R.
    [J]. SCIENCE, 2006, 312 (5781) : 1780 - 1782
  • [23] Negative refraction makes a perfect lens
    Pendry, JB
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (18) : 3966 - 3969
  • [24] Rose A, 2011, OPT MATER EXPRESS, V1, P1232
  • [25] Quantum engineering of optical nonlinearities
    Rosencher, E
    Fiore, A
    Vinter, B
    Berger, V
    Bois, P
    Nagle, J
    [J]. SCIENCE, 1996, 271 (5246) : 168 - 173
  • [26] 2ND HARMONIC-GENERATION BY INTERSUB-BAND TRANSITIONS IN COMPOSITIONALLY ASYMMETRICAL MQWS
    ROSENCHER, E
    BOIS, P
    NAGLE, J
    DELAITRE, S
    [J]. ELECTRONICS LETTERS, 1989, 25 (16) : 1063 - 1065
  • [27] Ultrastrong Light-Matter Coupling Regime with Polariton Dots
    Todorov, Y.
    Andrews, A. M.
    Colombelli, R.
    De Liberato, S.
    Ciuti, C.
    Klang, P.
    Strasser, G.
    Sirtori, C.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (19)
  • [28] Broadly tunable terahertz generation in mid-infrared quantum cascade lasers
    Vijayraghavan, Karun
    Jiang, Yifan
    Jang, Min
    Jiang, Aiting
    Choutagunta, Karthik
    Vizbaras, Augustinas
    Demmerle, Frederic
    Boehm, Gerhard
    Amann, Markus C.
    Belkin, Mikhail A.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [29] Phase-matched second harmonic generation in asymmetric double quantum wells
    Vodopyanov, KL
    O'Neill, K
    Serapiglia, GB
    Phillips, CC
    Hopkinson, M
    Vurgaftman, I
    Meyer, JR
    [J]. APPLIED PHYSICS LETTERS, 1998, 72 (21) : 2654 - 2656
  • [30] Intersubband absorption saturation study of narrow III-V multiple quantum wells in the lambda=2.8-9 mu m spectral range
    Vodopyanov, KL
    Chazapis, V
    Phillips, CC
    Sung, B
    Harris, JS
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1997, 12 (06) : 708 - 714