Gradient flows for non-smooth interaction potentials

被引:16
作者
Carrillo, J. A. [1 ]
Lisini, S. [2 ]
Mainini, E. [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[3] Univ Genoa, Dipartimento Ingn Meccan Energet Gestionale & Tra, Sez MAT, I-16129 Genoa, Italy
基金
英国工程与自然科学研究理事会;
关键词
Wasserstein distance; Gradient flows; Aggregation equations; Measure solution; STATIONARY STATES; KINETIC-MODELS; BLOW-UP; AGGREGATION; EQUATIONS;
D O I
10.1016/j.na.2014.01.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with a nonlocal interaction equation describing the evolution of a particle density under the effect of a general symmetric pairwise interaction potential, not necessarily in convolution form. We describe the case of a convex (or lambda-convex) potential, possibly not smooth at several points, generalizing the results of Carrillo et al. (2011). We also identify the cases in which the dynamic is still governed by the continuity equation with well-characterized nonlocal velocity field. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:122 / 147
页数:26
相关论文
共 27 条
  • [1] Ambrosio L., 2000, Oxford Mathematical Monographs
  • [2] Ambrosio L., 2005, Lectures in Mathematics ETH Zurich
  • [3] [Anonymous], 1999, CONVERGE PROBAB MEAS, DOI DOI 10.1002/9780470316962
  • [4] [Anonymous], 2008, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences
  • [5] Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability
    Balague, D.
    Carrillo, J. A.
    Laurent, T.
    Raoul, G.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2013, 260 : 5 - 25
  • [6] Dimensionality of Local Minimizers of the Interaction Energy
    Balague, D.
    Carrillo, J. A.
    Laurent, T.
    Raoul, G.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 209 (03) : 1055 - 1088
  • [7] A non-Maxwellian steady distribution for one-dimensional granular media
    Benedetto, D
    Caglioti, E
    Carrillo, JA
    Pulvirenti, M
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (5-6) : 979 - 990
  • [8] Benedetto D, 1999, RAIRO-MATH MODEL NUM, V33, P439
  • [9] Finite-time blow-up of solutions of an aggregation equation in Rn
    Bertozzi, Andrea L.
    Laurent, Thomas
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (03) : 717 - 735
  • [10] Lp Theory for the Multidimensional Aggregation Equation
    Bertozzi, Andrea L.
    Laurent, Thomas
    Rosado, Jesus
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (01) : 45 - 83