Hilbert-Schmidt and trace class pseudo-differential operators on the Heisenberg group

被引:11
作者
Dasgupta, Aparajita [1 ]
Wong, M. W. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Heisenberg group; Stone-von Neumann theorem; Fourier transform; Fourier inversion formula; lambda-Weyl transforms; Pseudo-differential operators; Operator-valued symbols; L-2-boundedness; Hilbert-Schmidt operators; Trace class operators; Traces;
D O I
10.1007/s11868-013-0079-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Pseudo-differential operators with operator-valued symbols on the Heisenberg group H-n are introduced. We give necessary and sufficient conditions on the symbols for which these operators are in the Hilbert-Schmidt class. These Hilbert-Schmidt operators are then identified with Weyl transforms with symbols in L-2(R2n+1 x R2n+1). We also give a characterization of trace class pseudo-differential operators on the Heisenberg group H-n. A trace formula for these trace class operators is presented.
引用
收藏
页码:345 / 359
页数:15
相关论文
共 12 条
[1]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[2]  
[Anonymous], 1980, FUNCTIONAL ANAL
[3]  
Andres RTC, 2011, J PSEUDO-DIFFER OPER, V2, P367, DOI 10.1007/s11868-011-0035-4
[4]  
Chen Z, 2013, J PSEUDO-DIFFER OPER, V4, P13, DOI 10.1007/s11868-013-0061-5
[5]  
Du J., 2000, APPROX THEORY APPL N, V16, P41
[6]  
Fischer V., ARXIV12092621
[7]   Lower bounds for operators on graded Lie groups [J].
Fischer, Veronique ;
Ruzhansky, Michael .
COMPTES RENDUS MATHEMATIQUE, 2013, 351 (1-2) :13-18
[8]  
Molahajloo S, 2010, J PSEUDO-DIFFER OPER, V1, P183, DOI 10.1007/s11868-010-0010-5
[9]  
Thangavelu S, 1998, HARMONIC ANAL HEISEN
[10]  
Wong M.W., 1998, Weyl Transforms