Electrical transport and thermoelectric properties of Te-Se solid solutions

被引:14
作者
Yang, Manman [1 ,2 ]
Zhu, Hongyu [3 ]
Yi, Wencai [4 ]
Li, Shangsheng [1 ,2 ]
Hu, Meihua [1 ,2 ]
Hu, Qiang [3 ]
Du, Baoli [3 ]
Liu, Xiaobing [4 ]
Su, Taichao [1 ,2 ,5 ,6 ]
机构
[1] Henan Polytech Univ, Inst Mat Sci & Engn, Jiaozuo 454000, Henan, Peoples R China
[2] Jiaozuo Engn Technol Res Ctr Adv Funct Mat Prepar, Jiaozuo 454000, Henan, Peoples R China
[3] Henan Polytech Univ, Sch Phys & Elect Informat Engn, Jiaozuo 454000, Henan, Peoples R China
[4] Qufu Normal Univ, Sch Phys & Phys Engn, Qufu 273165, Peoples R China
[5] Henan Joint Int Res Lab High Performance Metall M, Jiaozuo 454000, Henan, Peoples R China
[6] Henan Key Lab Mat Deep Earth Sci & Technol, Jiaozuo 454000, Henan, Peoples R China
基金
奥地利科学基金会;
关键词
Te-Se solid solutions; High pressure; Thermoelectric; TOTAL-ENERGY CALCULATIONS; BAND-STRUCTURE; PERFORMANCE; SEMICONDUCTORS; POWER;
D O I
10.1016/j.physleta.2019.05.019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, p-type thermoelectric material Te-Se solid solutions have been successfully prepared by the high-pressure technique. The thermal conductivity of Te was depressed sharply by Se alloying. An extremely low thermal conductivity 0.27 W m(-1) K-1 was obtained for Te alloyed with 15 mol% Se, which near the theoretical minimum, Kmin. The bipolar diffusion effect of Te was suppressed by Se alloying due to the increased band gap, which lead to enhanced Seebeck coefficient and depressed bipolar diffusion thermal conductivity under high temperature. The maximum figure of merit, ZT of 0.37 at 480 K was obtained for Te alloyed with 5 mol% Se, which is about twice higher than that of pristine Te. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:2615 / 2620
页数:6
相关论文
共 38 条
[1]  
[Anonymous], 1995, Handbook of Thermoelectrics
[2]  
Bennett G., 2004, 4 INT EN CONV ENG C, P4191
[3]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Enhanced thermoelectric performance of Na-doped PbTe synthesized under high pressure [J].
Cai, Bowen ;
Li, Jianghua ;
Sun, Hao ;
Zhang, Long ;
Xu, Bo ;
Hu, Wentao ;
Yu, Dongli ;
He, Julong ;
Zhao, Zhisheng ;
Liu, Zhongyuan ;
Tian, Yongjun .
SCIENCE CHINA-MATERIALS, 2018, 61 (09) :1218-1224
[6]   Thermoelectric cooling and power generation [J].
DiSalvo, FJ .
SCIENCE, 1999, 285 (5428) :703-706
[7]  
Engler R. E., 1987, DEAC01NE32117 US DEP
[8]   Estimation of the thermal band gap of a semiconductor from Seebeck measurements [J].
Goldsmid, HJ ;
Sharp, JW .
JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (07) :869-872
[9]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[10]   Resonant levels in bulk thermoelectric semiconductors [J].
Heremans, Joseph P. ;
Wiendlocha, Bartlomiej ;
Chamoire, Audrey M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5510-5530