Orthogonal Symmetric Toeplitz Matrices

被引:6
作者
Boettcher, Albrecht [1 ]
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
关键词
Toeplitz matrix; matrix power; orthogonal matrix; symmetric matrix; circulant; skew circulant; inverse eigenvalue problem;
D O I
10.1007/s11785-008-0053-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the number of orthogonal and symmetric Toeplitz matrices of a given order is finite and determine all these matrices. In this way we also obtain a description of the set of all symmetric Toeplitz matrices whose spectrum is a prescribed doubleton.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 7 条
[1]  
Bottcher A., 2006, SPRINGER MONOGRAPHS
[2]   SYMMETRICAL TOEPLITZ MATRICES WITH 2 PRESCRIBED EIGENPAIRS [J].
CHU, MT ;
ERBRECHT, MA .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (02) :623-635
[3]  
Davis PJ., 1979, Circulant Matrices
[4]  
DELSARTE P, 1984, LECT NOTES CONTROL I, V58, P194
[5]   Commutation relations for Toeplitz and Hankel matrices [J].
Gu, C ;
Patton, L .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :728-746
[6]  
Landau H. J., 1994, Journal of the American Mathematical Society, V7, P749, DOI DOI 10.1090/S0894-0347-1994-1234570-6
[7]   ON SPECTRUM OF TOEPLITZ OPERATOR [J].
WIDOM, H .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (01) :365-&