Multiple solutions for nonhomogeneous Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian in RN

被引:0
作者
Pucci, Patrizia [1 ]
Xiang, Mingqi [2 ]
Zhang, Binlin [3 ,4 ,5 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[3] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[5] Heilongjiang Inst Technol, Dept Math, Harbin 150050, Peoples R China
基金
黑龙江省自然科学基金;
关键词
NONLOCAL OPERATORS; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; WEAK SOLUTIONS; EXISTENCE; SYMMETRY;
D O I
10.1007/s00526-015-0883-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the existence of multiple solutions for the nonhomogeneous fractional p-Laplacian equations of Schrodinger-Kirchhoff type M(integral integral(R2N) vertical bar u(x) - u(y)vertical bar(p)/vertical bar x - y vertical bar(N+ps) dxdy) (-Delta)(p)(s) u + V(x)vertical bar u vertical bar(p-2)u = f (x, u) + g(x) in RN, where (-Delta)(p)(s) is the fractional p-Laplacian operator, with 0 < s < 1 < p < infinity and ps < N, the nonlinearity f : R-N x R (R): R is a Caratheodory function and satisfies the Ambrosetti-Rabinowitz condition, V : R-N (R) R+ is a potential function and g : R-N (R) R is a perturbation term. We first establish Batsch-Wang type compact embedding theorem for the fractional Sobolev spaces. Then multiplicity results are obtained by using the Ekeland variational principle and the Mountain Pass theorem.
引用
收藏
页码:2785 / 2806
页数:22
相关论文
共 50 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 2003, SOBOLEV SPACES
[4]  
[Anonymous], 1883, Mechanik
[5]  
Applebaum D., 2004, Notices Am. Math. Soc, V51, P1336
[6]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[7]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[8]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[9]  
BARTSCH T, 2001, COMMUN CONTEMP MATH, V3, P1, DOI DOI 10.1142/S0219199701000494
[10]   A bifurcation result for non-local fractional equations [J].
Bisci, Giovanni Molica ;
Servadei, Raffaella .
ANALYSIS AND APPLICATIONS, 2015, 13 (04) :371-394