Some properties of the Yamabe soliton and the related nonlinear elliptic equation

被引:10
作者
Hsu, S. Y. [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Math, Min Hsiung Chia Yi 621, Taiwan
关键词
EXTINCTION PROFILE; FLOW;
D O I
10.1007/s00526-012-0583-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Firstly we prove the non-existence of positive radially symmetric solution of the nonlinear elliptic equation n-1/m Delta v(m) + alpha nu + beta x . del u = 0 in R-n when n >= 3, 0 < m <= n-2/n, alpha < 0 and beta <= 0 and prove various properties of the solution of the above elliptic equation for other parameter range of alpha and beta. Then these results are applied to prove some results on Yamabe solitons including the exact behaviour of the metric of the Yamabe soliton, its scalar curvature and sectional curvature, at infinity. A new proof of a result of Daskalopoulos and Sesum (The classification of locally conformally flat Yamabe solitons, http://arxiv.org/abs/1104.2242) on the positivity of the sectional curvature of Yamabe solitons is also presented.
引用
收藏
页码:307 / 321
页数:15
相关论文
共 11 条
[1]  
Angenent S, 2004, MATH RES LETT, V11, P493
[2]  
[Anonymous], 2007, POROUS MEDIUM EQUATI
[3]  
[Anonymous], 1994, C P LECT NOTES GEOME
[4]  
[Anonymous], 2006, Smoothing and Decay Estimates for Nonlinear Diffusion Equations
[5]   ON THE GLOBAL STRUCTURE OF CONFORMAL GRADIENT SOLITONS WITH NONNEGATIVE RICCI TENSOR [J].
Catino, Giovanni ;
Mantegazza, Carlo ;
Mazzieri, Lorenzo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (06)
[6]   THE YAMABE FLOW ON LOCALLY CONFORMALLY FLAT MANIFOLDS WITH POSITIVE RICCI CURVATURE [J].
CHOW, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (08) :1003-1014
[7]  
Daskalopoulos P., 2011, CLASSIFICATION LOCAL
[8]   On the extinction profile of solutions to fast diffusion [J].
Daskalopoulos, Panagiota ;
Sesum, Natasa .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 622 :95-119
[9]   On the Extinction Profile for Solutions of ut = Δu(N-2)/(N+2) [J].
del Ping, M ;
Sáez, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (01) :611-628
[10]   CLASS OF SIMILARITY SOLUTIONS OF POROUS-MEDIA EQUATION [J].
GILDING, BH ;
PELETIER, LA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 55 (02) :351-364