An Adaptive Data Driven Model for Characterizing Rock Properties from Drilling Data

被引:0
|
作者
Zhou, Hang [1 ]
Hatherly, Peter [1 ]
Ramos, Fabio [1 ]
Nettleton, Eric [1 ]
机构
[1] Univ Sydney, Australian Ctr Field Robot, Sydney, NSW 2006, Australia
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autonomous operation of blast hole drill rigs requires monitoring of drilling parameters known as "Measurement While Drilling" (MWD) data. From these data, rock properties can be inferred. A supervised classification scheme is usually used to map MWD data inputs to rock type outputs given some labeled training data. However, the geology has no definite ground truth that can allow a reliable labeling of the training data, nor is there a clear input-output pair connection between the MWD data and the rock types. In this paper, an adaptive unsupervised approach is proposed to estimate the rock types in a data driven way by minimizing the entropy gradient of the characterizing measure - "Optimized Adjusted Penetration Rate" (OAPR). Neither data labeling nor fixed model parameters are required because of the data driven nature of the algorithm. Experimental results illustrate the effectiveness of our solution.
引用
收藏
页码:1909 / 1915
页数:7
相关论文
共 50 条
  • [1] Data-driven model for the identification of the rock type at a drilling bit
    Klyuchnikov, Nikita
    Zaytsev, Alexey
    Gruzdev, Arseniy
    Ovchinnikov, Georgiy
    Antipova, Ksenia
    Ismailova, Leyla
    Muravleva, Ekaterina
    Burnaev, Evgeny
    Semenikhin, Artyom
    Cherepanov, Alexey
    Koryabkin, Vitaliy
    Simon, Igor
    Tsurgan, Alexey
    Krasnov, Fedor
    Koroteev, Dmitry
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 178 : 506 - 516
  • [2] DETERMINATION OF ROCK STRENGTH FROM DRILLING DATA
    FROLOV, AV
    TSOKURENKO, AA
    SOVIET MINING SCIENCE USSR, 1984, 20 (06): : 434 - 437
  • [3] Data driven drilling
    James, Paul
    COMPUTING AND CONTROL ENGINEERING, 2006, 17 (04): : 36 - 39
  • [4] Calculating unconfined rock strength from drilling data
    Hareland, G.
    Nygaard, R.
    ROCK MECHANICS: MEETING SOCIETY'S CHALLENGES AND DEMANDS, VOLS 1 AND 2: VOL: FUNDAMENTALS, NEW TECHNOLOGIES & NEW IDEAS; VOL 2: CASE HISTORIES, 2007, : 1717 - 1723
  • [5] Automatic Rock Recognition from Drilling Performance Data
    Zhou, Hang
    Hatherly, Peter
    Monteiro, Sildomar T.
    Ramos, Fabio
    Oppolzer, Florian
    Nettleton, Eric
    Scheding, Steve
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 3407 - 3412
  • [6] An analytical model for estimating rock strength parameters from small-scale drilling data
    Sajjad Kalantari
    Alireza Baghbanan
    Hamid Hashemalhosseini
    Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11 (01) : 135 - 145
  • [7] An analytical model for estimating rock strength parameters from small-scale drilling data
    Kalantari, Sajjad
    Baghbanan, Alireza
    Hashemalhosseini, Hamid
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2019, 11 (01) : 135 - 145
  • [8] Characterizing parking systems from sensor data through a data-driven approach
    Arjona Martinez, Jamie
    Paz Linares, Maria
    Casanovas, Josep
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2021, 13 (03): : 183 - 192
  • [9] Data driven model using adaptive fuzzy system
    Verma, Nishchal K.
    Hanmandlu, Madasu
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2008, 2 (04) : 447 - 458
  • [10] DATA DRIVEN ADAPTIVE MODEL PREDICTIVE CONTROL WITH CONSTRAINTS
    Wahab, Norhaliza A.
    Balderud, Jonas
    Katebi, Reza
    EMSS 2008: 20TH EUROPEAN MODELING AND SIMULATION SYMPOSIUM, 2008, : 231 - 236