Global synchronization of delay-coupled genetic oscillators

被引:16
|
作者
Qiu, Jianlong [1 ,2 ,3 ]
Cao, Jinde [1 ,2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
[3] Linyi Normal Univ, Dept Math, Linyi 276005, Peoples R China
基金
中国国家自然科学基金;
关键词
Exponential synchronization; Linear matrix inequality; Lyapunov functional; Delay coupling; REGULATORY NETWORKS; ROBUST STABILITY; MODEL;
D O I
10.1016/j.neucom.2009.05.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the global exponential synchronization of delay-coupled identical genetic oscillator. By constructing appropriate Lyapunov functional and using the linear matrix inequality (LMI) approach, a series of sufficient criteria, which are very easy to verify, are obtained. It is shown that these criteria improve and extend the earlier works. Finally, a population of genetic oscillators based on the Goodwin model is adopted as a numerical example to demonstrate the effectiveness of our theoretical results. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3845 / 3850
页数:6
相关论文
共 50 条
  • [41] Isochronal synchronization of time delay and delay-coupled chaotic systems
    Grzybowski, J. M. V.
    Macau, E. E. N.
    Yoneyama, T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (17)
  • [42] Stability and bifurcation analysis in the delay-coupled nonlinear oscillators
    Dadi, Z.
    Afsharnezhad, Z.
    Pariz, N.
    NONLINEAR DYNAMICS, 2012, 70 (01) : 155 - 169
  • [43] Phase clustering in complex networks of delay-coupled oscillators
    Perez, Toni
    Eguiluz, Victor M.
    Arenas, Alex
    CHAOS, 2011, 21 (02)
  • [44] Symmetric periodic solutions of delay-coupled optoelectronic oscillators
    Zhang, Chunrui
    Li, Hongpeng
    Advances in Difference Equations, 2016, : 1 - 12
  • [45] Symmetric periodic solutions of delay-coupled optoelectronic oscillators
    Chunrui Zhang
    Hongpeng Li
    Advances in Difference Equations, 2016
  • [46] Amplitude death in delay-coupled oscillators on directed graphs
    Sugitani, Yoshiki
    Konishi, Keiji
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [47] Chimera states in purely local delay-coupled oscillators
    Bera, Bidesh K.
    Ghosh, Dibakar
    PHYSICAL REVIEW E, 2016, 93 (05)
  • [48] Collective dynamics of delay-coupled limit cycle oscillators
    Abhijit Sen
    Ramana Dodla
    George L. Johnston
    Pramana, 2005, 64 : 465 - 482
  • [49] Quasiperiodic synchronization for two delay-coupled semiconductor lasers
    Hohl, A
    Gavrielides, A
    Erneux, T
    Kovanis, V
    PHYSICAL REVIEW A, 1999, 59 (05): : 3941 - 3949
  • [50] Synchronization properties of three delay-coupled semiconductor lasers
    Vicente, Raul
    Fischer, Ingo
    Mirasso, Claudio R.
    PHYSICAL REVIEW E, 2008, 78 (06):