Global synchronization of delay-coupled genetic oscillators

被引:16
|
作者
Qiu, Jianlong [1 ,2 ,3 ]
Cao, Jinde [1 ,2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
[3] Linyi Normal Univ, Dept Math, Linyi 276005, Peoples R China
基金
中国国家自然科学基金;
关键词
Exponential synchronization; Linear matrix inequality; Lyapunov functional; Delay coupling; REGULATORY NETWORKS; ROBUST STABILITY; MODEL;
D O I
10.1016/j.neucom.2009.05.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the global exponential synchronization of delay-coupled identical genetic oscillator. By constructing appropriate Lyapunov functional and using the linear matrix inequality (LMI) approach, a series of sufficient criteria, which are very easy to verify, are obtained. It is shown that these criteria improve and extend the earlier works. Finally, a population of genetic oscillators based on the Goodwin model is adopted as a numerical example to demonstrate the effectiveness of our theoretical results. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3845 / 3850
页数:6
相关论文
共 50 条
  • [31] Stability and bifurcation analysis in the delay-coupled nonlinear oscillators
    Z. Dadi
    Z. Afsharnezhad
    N. Pariz
    Nonlinear Dynamics, 2012, 70 : 155 - 169
  • [32] Inphase and Antiphase Synchronization in a Delay-Coupled System With Applications to a Delay-Coupled FitzHugh-Nagumo System
    Song, Yongli
    Xu, Jian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (10) : 1659 - 1670
  • [33] Robust partial synchronization of delay-coupled networks
    Su, Libo
    Wei, Yanling
    Michiels, Wim
    Steur, Erik
    Nijmeijer, Henk
    CHAOS, 2020, 30 (01)
  • [34] Prediction of partial synchronization in delay-coupled nonlinear oscillators, with application to Hindmarsh-Rose neurons
    Unal, Hakki Ulas
    Michiels, Wim
    NONLINEARITY, 2013, 26 (12) : 3101 - 3126
  • [35] Dynamics of a model of two delay-coupled relaxation oscillators
    Ruelas, R. E.
    Rand, R. H.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (08) : 1980 - 1988
  • [36] Collective dynamics of delay-coupled limit cycle oscillators
    Abhijit Sen
    Ramana Dodla
    George L. Johnston
    Pramana, 2005, 64 (4) : 465 - 482
  • [37] Travelling waves in arrays of delay-coupled phase oscillators
    Laing, Carlo R.
    CHAOS, 2016, 26 (09)
  • [38] Spectra of delay-coupled heterogeneous noisy nonlinear oscillators
    Andrea Vüllings
    Eckehard Schöll
    Benjamin Lindner
    The European Physical Journal B, 2014, 87
  • [39] Clustering in delay-coupled smooth and relaxational chemical oscillators
    Blaha, Karen
    Lehnert, Judith
    Keane, Andrew
    Dahms, Thomas
    Hoevel, Philipp
    Schoell, Eckehard
    Hudson, John L.
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [40] Collective dynamics of delay-coupled limit cycle oscillators
    Sen, A
    Dodla, R
    Johnston, GL
    PRAMANA-JOURNAL OF PHYSICS, 2005, 64 (04): : 465 - 482