Global synchronization of delay-coupled genetic oscillators

被引:16
|
作者
Qiu, Jianlong [1 ,2 ,3 ]
Cao, Jinde [1 ,2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
[3] Linyi Normal Univ, Dept Math, Linyi 276005, Peoples R China
基金
中国国家自然科学基金;
关键词
Exponential synchronization; Linear matrix inequality; Lyapunov functional; Delay coupling; REGULATORY NETWORKS; ROBUST STABILITY; MODEL;
D O I
10.1016/j.neucom.2009.05.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the global exponential synchronization of delay-coupled identical genetic oscillator. By constructing appropriate Lyapunov functional and using the linear matrix inequality (LMI) approach, a series of sufficient criteria, which are very easy to verify, are obtained. It is shown that these criteria improve and extend the earlier works. Finally, a population of genetic oscillators based on the Goodwin model is adopted as a numerical example to demonstrate the effectiveness of our theoretical results. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3845 / 3850
页数:6
相关论文
共 50 条
  • [21] Amplitude death in networks of delay-coupled delay oscillators
    Hoefener, Johannes M.
    Sethia, Gautam C.
    Gross, Thilo
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1999):
  • [22] Synchronization of delay-coupled oscillators:: A study of semiconductor lasers -: art. no. 163901
    Wünsche, HJ
    Bauer, S
    Kreissl, J
    Ushakov, O
    Korneyev, N
    Henneberger, F
    Wille, E
    Erzgräber, H
    Peil, M
    Elsässer, W
    Fischer, I
    PHYSICAL REVIEW LETTERS, 2005, 94 (16)
  • [23] Synchronization of tunable asymmetric square-wave pulses in delay-coupled optoelectronic oscillators
    Martinez-Llinas, Jade
    Colet, Pere
    Erneux, Thomas
    PHYSICAL REVIEW E, 2015, 91 (03):
  • [24] Synchronization of delay-coupled nonlinear oscillators: An approach based on the stability analysis of synchronized equilibria
    Michiels, Wim
    Nijmeijer, Henk
    CHAOS, 2009, 19 (03)
  • [25] Oscillation death in asymmetrically delay-coupled oscillators
    Zou, Wei
    Tang, Yang
    Li, Lixiang
    Kurths, Juergen
    PHYSICAL REVIEW E, 2012, 85 (04):
  • [26] Periodic patterns in a ring of delay-coupled oscillators
    Perlikowski, P.
    Yanchuk, S.
    Popovych, O. V.
    Tass, P. A.
    PHYSICAL REVIEW E, 2010, 82 (03)
  • [27] Synchronization of fluctuating delay-coupled chaotic networks
    Jimenez-Martin, Manuel
    Rodriguez-Laguna, Javier
    D'Huys, Otti
    de la Rubia, Javier
    Korutcheva, Elka
    PHYSICAL REVIEW E, 2017, 95 (05) : 052210
  • [28] Adaptively Controlled Synchronization of Delay-Coupled Networks
    Hoevel, Philipp
    Lehnert, Judith
    Selivanov, Anton
    Fradkov, Alexander
    Schoell, Eckehard
    CONTROL OF SELF-ORGANIZING NONLINEAR SYSTEMS, 2016, : 47 - 63
  • [29] Cluster and group synchronization in delay-coupled networks
    Dahms, Thomas
    Lehnert, Judith
    Schoell, Eckehard
    PHYSICAL REVIEW E, 2012, 86 (01)
  • [30] Spectra of delay-coupled heterogeneous noisy nonlinear oscillators
    Vuellings, Andrea
    Schoell, Eckehard
    Lindner, Benjamin
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (02):