Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9

被引:2512
作者
Doench, John G. [1 ]
Fusi, Nicolo [2 ]
Sullender, Meagan [1 ]
Hegde, Mudra [1 ]
Vaimberg, Emma W. [1 ]
Donovan, Katherine F. [1 ]
Smith, Ian [1 ]
Tothova, Zuzana [1 ,3 ]
Wilen, Craig [4 ]
Orchard, Robert [4 ]
Virgin, Herbert W. [4 ]
Listgarten, Jennifer [2 ]
Root, David E. [1 ]
机构
[1] Broad Inst MIT & Harvard, Cambridge, MA USA
[2] Microsoft Res New England, Cambridge, MA USA
[3] Dana Farber Canc Inst, Div Hematol Malignancies, Boston, MA 02115 USA
[4] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO USA
关键词
GENETIC SCREENS; CELL-LINE; GENOME; CAS9; DNA; RAF; IDENTIFICATION; ENDONUCLEASE; SPECIFICITY; RESISTANCE;
D O I
10.1038/nbt.3437
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas9-based genetic screens are a powerful new tool in biology. By simply altering the sequence of the single-guide RNA (sgRNA), one can reprogram Cas9 to target different sites in the genome with relative ease, but the on-target activity and off-target effects of individual sgRNAs can vary widely. Here, we use recently devised sgRNA design rules to create human and mouse genome-wide libraries, perform positive and negative selection screens and observe that the use of these rules produced improved results. Additionally, we profile the off-target activity of thousands of sgRNAs and develop a metric to predict off-target sites. We incorporate these findings from large-scale, empirical data to improve our computational design rules and create optimized sgRNA libraries that maximize on-target activity and minimize off-target effects to enable more effective and efficient genetic screens and genome engineering.
引用
收藏
页码:184 / +
页数:12
相关论文
共 50 条
  • [31] Predicting CRISPR-Cas9 Off-target with Self-supervised Neural Networks
    Chen, Dong
    Shu, Wenjie
    Peng, Shaoliang
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 245 - 250
  • [32] Recent Advancements in Reducing the Off-Target Effect of CRISPR-Cas9 Genome Editing
    Mengstie, Misganaw Asmamaw
    Azezew, Muluken Teshome
    Dejenie, Tadesse Asmamaw
    Teshome, Assefa Agegnehu
    Admasu, Fitalew Tadele
    Teklemariam, Awgichew Behaile
    Mulu, Anemut Tilahun
    Agidew, Melaku Mekonnen
    Adugna, Dagnew Getnet
    Geremew, Habtamu
    Abebe, Endeshaw Chekol
    BIOLOGICS-TARGETS & THERAPY, 2024, 18 : 21 - 28
  • [33] Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements
    Tycko, Josh
    Wainberg, Michael
    Marinov, Georgi K.
    Ursu, Oana
    Hess, Gaelen T.
    Ego, Braeden K.
    Aradhana
    Li, Amy
    Truong, Alisa
    Trevino, Alexandro E.
    Spees, Kaitlyn
    Yao, David
    Kaplow, Irene M.
    Greenside, Peyton G.
    Morgens, David W.
    Phanstiel, Douglas H.
    Snyder, Michael P.
    Bintu, Lacramioara
    Greenleaf, William J.
    Kundaje, Anshul
    Bassik, Michael C.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [34] Off-target effects in CRISPR/Cas9 gene editing
    Guo, Congting
    Ma, Xiaoteng
    Gao, Fei
    Guo, Yuxuan
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [35] Off-Target Assessment of CRISPR-Cas9 Guiding RNAs in Human iPS and Mouse ES Cells
    Tan, E-Pien
    Li, Yilong
    Velasco-Herrera, Martin Del Castillo
    Yusa, Kosuke
    Bradley, Allan
    GENESIS, 2015, 53 (02) : 225 - 236
  • [36] Prediction of Off-Target Effects in CRISPR/Cas9 System by Ensemble Learning
    Fan, Yongxian
    Xu, Haibo
    CURRENT BIOINFORMATICS, 2021, 16 (09) : 1169 - 1178
  • [37] Transformer-based anti-noise models for CRISPR-Cas9 off-target activities prediction
    Guan, Zengrui
    Jiang, Zhenran
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [38] Off-target Effects in CRISPR/Cas9-mediated Genome Engineering
    Zhang, Xiao-Hui
    Tee, Louis Y.
    Wang, Xiao-Gang
    Huang, Qun-Shan
    Yang, Shi-Hua
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2015, 4 : e264
  • [39] R-CRISPR: A Deep Learning Network to Predict Off-Target Activities with Mismatch, Insertion and Deletion in CRISPR-Cas9 System
    Niu, Rui
    Peng, Jiajie
    Zhang, Zhipeng
    Shang, Xuequn
    GENES, 2021, 12 (12)
  • [40] A novel sgRNA selection system for CRISPR-Cas9 in mammalian cells
    Zhang, Haiwei
    Zhang, Xixi
    Fan, Cunxian
    Xie, Qun
    Xu, Chengxian
    Zhao, Qun
    Liu, Yongbo
    Wu, Xiaoxia
    Zhang, Haibing
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2016, 471 (04) : 528 - 532