Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9

被引:2512
|
作者
Doench, John G. [1 ]
Fusi, Nicolo [2 ]
Sullender, Meagan [1 ]
Hegde, Mudra [1 ]
Vaimberg, Emma W. [1 ]
Donovan, Katherine F. [1 ]
Smith, Ian [1 ]
Tothova, Zuzana [1 ,3 ]
Wilen, Craig [4 ]
Orchard, Robert [4 ]
Virgin, Herbert W. [4 ]
Listgarten, Jennifer [2 ]
Root, David E. [1 ]
机构
[1] Broad Inst MIT & Harvard, Cambridge, MA USA
[2] Microsoft Res New England, Cambridge, MA USA
[3] Dana Farber Canc Inst, Div Hematol Malignancies, Boston, MA 02115 USA
[4] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO USA
关键词
GENETIC SCREENS; CELL-LINE; GENOME; CAS9; DNA; RAF; IDENTIFICATION; ENDONUCLEASE; SPECIFICITY; RESISTANCE;
D O I
10.1038/nbt.3437
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas9-based genetic screens are a powerful new tool in biology. By simply altering the sequence of the single-guide RNA (sgRNA), one can reprogram Cas9 to target different sites in the genome with relative ease, but the on-target activity and off-target effects of individual sgRNAs can vary widely. Here, we use recently devised sgRNA design rules to create human and mouse genome-wide libraries, perform positive and negative selection screens and observe that the use of these rules produced improved results. Additionally, we profile the off-target activity of thousands of sgRNAs and develop a metric to predict off-target sites. We incorporate these findings from large-scale, empirical data to improve our computational design rules and create optimized sgRNA libraries that maximize on-target activity and minimize off-target effects to enable more effective and efficient genetic screens and genome engineering.
引用
收藏
页码:184 / +
页数:12
相关论文
共 50 条
  • [21] Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm
    Zhou, Hong
    Zhou, Michael
    Li, Daisy
    Manthey, Joseph
    Lioutikova, Ekaterina
    Wang, Hong
    Zeng, Xiao
    BMC GENOMICS, 2017, 18
  • [22] Modeling the off-target effects of CRISPR-Cas9 experiments for the treatment of Duchenne Muscular Dystrophy
    Koutsoni, Eleni
    Konstantakos, Vasileios
    Nentidis, Anastasios
    Krithara, Anastasia
    Paliouras, Georgios
    PROCEEDINGS OF THE 12TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE, SETN 2022, 2022,
  • [23] Applying CRISPR-Cas9 off-target editing on DNA based steganography
    Zhou H.
    Huan X.
    International Journal of Advanced Computer Science and Applications, 2019, 10 (08): : 1 - 5
  • [24] Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities
    Zhang, Guishan
    Luo, Ye
    Dai, Xianhua
    Dai, Zhiming
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [25] High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
    Kleinstiver, Benjamin P.
    Pattanayak, Vikram
    Prew, Michelle S.
    Tsai, Shengdar Q.
    Nguyen, Nhu T.
    Zheng, Zongli
    Joung, J. Keith
    NATURE, 2016, 529 (7587) : 490 - +
  • [26] Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity
    Hoijer, Ida
    Johansson, Josefin
    Gudmundsson, Sanna
    Chin, Chen-Shan
    Bunikis, Ignas
    Haggqvist, Susana
    Emmanouilidou, Anastasia
    Wilbe, Maria
    den Hoed, Marcel
    Bondeson, Marie-Louise
    Feuk, Lars
    Gyllensten, Ulf
    Ameur, Adam
    GENOME BIOLOGY, 2020, 21 (01)
  • [27] Accurate deep learning off-target prediction with novel sgRNA-DNA sequence encoding in CRISPR-Cas9 gene editing
    Charlier, Jeremy
    Nadon, Robert
    Makarenkov, Vladimir
    BIOINFORMATICS, 2021, 37 (16) : 2299 - 2307
  • [28] Genetic variation may confound analysis of CRISPR-Cas9 off-target mutations
    Wang, Guanqun
    Du, Meijie
    Wang, Jianbin
    Zhu, Ting F.
    CELL DISCOVERY, 2018, 4
  • [29] Evaluation of Homology-Independent CRISPR-Cas9 Off-Target Assessment Methods
    Chaudhari, Hemangi G.
    Penterman, Jon
    Whitton, Holly J.
    Spencer, Sarah J.
    Flanagan, Nicole
    Zhang, Maria C. Lei
    Huang, Elaine
    Khedkar, Aditya S.
    Toomey, J. Mike
    Shearer, Courtney A.
    Needham, Alexander W.
    Ho, Tony W.
    Kulman, John D.
    Cradick, T. J.
    Kernytsky, Andrew
    CRISPR JOURNAL, 2020, 3 (06): : 440 - 453
  • [30] Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding
    Sari, Orhan
    Liu, Ziying
    Pan, Youlian
    Shao, Xiaojian
    BIOINFORMATICS ADVANCES, 2025, 5 (01):