Low Thermal Gradient Czochralski growth of large CdWO4 crystals and electronic properties of (010) cleaved surface

被引:56
作者
Atuchin, V. V. [1 ,2 ,3 ]
Galashov, E. N. [4 ]
Khyzhun, O. Y. [5 ]
Bekenev, V. L. [5 ]
Pokrovsky, L. D. [1 ]
Borovlev, Yu A. [6 ]
Zhdankov, V. N. [7 ]
机构
[1] SB RAS, Inst Semicond Phys, Lab Opt Mat & Struct, Novosibirsk 630090 90, Russia
[2] Tomsk State Univ, Funct Elect Lab, Tomsk 634050, Russia
[3] Novosibirsk State Univ, Lab Semicond & Dielect Mat, Novosibirsk 630090, Russia
[4] Novosibirsk State Univ, Dept Appl Phys, Novosibirsk 630090, Russia
[5] NAS Ukraine, Frantsevich Inst Problems Mat Sci, 3 Krzhyzhanivsky St, UA-03142 Kiev, Ukraine
[6] SB RAS, Nikolaev Inst Inorgan Chem, Lab Crystal Growth, Novosibirsk 630090 90, Russia
[7] CML Ltd, 3 Lavrentiev Ave, Novosibirsk 630090 90, Russia
关键词
Low Thermal Gradient Czochralski technique; Tungstates; Scintillator materials; TUNGSTEN-ALUMINA CATALYSTS; CORE-LEVEL SPECTROSCOPY; X-RAY SPECTROSCOPY; BISMUTH TUNGSTATE; STRUCTURE REFINEMENT; SINGLE-CRYSTALS; RHEED ANALYSIS; BGO CRYSTALS; ZNWO4; XPS;
D O I
10.1016/j.jssc.2015.05.017
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The crystal growth of large high-quality inclusion-free CdWO4 crystals, 110 mm in diameter and mass up to 20 kg, has been carried out by the Low Thermal Gradient Czochralski (LTG Cz) technique. The high purity CdWO4(010) surface has been prepared by cleavage and high structural quality of the surface has been verified by RHEED, revealing a system of Kikuchi lines. The chemical state and electronic structure of the surface have been studied using X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). The total and partial densities of states of the CdWO4 tungstate were calculated employing the first-principles full potential linearized augmented plane wave (FP-LAPW) method. The results indicate that the principal contributors to the valence band of CdWO4 are the Cd 4d, W 5d and O 2p states which contribute mainly at the bottom, in the central portion and at the top of the valence band, respectively, with also significant contributions of the mentioned states throughout the whole CdWO4 valence-band region. With respect to the occupation of the O 2p states, the results of the FP-LAPW calculations are confirmed by comparison on a common energy scale of the XPS valence-band spectrum and the XES band representing the energy distribution of the O 2p states in this compound. Additionally, the FP-LAPW data allow us to conclude that the CdWO4 tungstate is a non-direct semiconductor. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 73 条
[11]   Core level spectroscopy and RHEED analysis of KGd(WO4)2 surface [J].
Atuchin, VV ;
Kesler, VG ;
Maklakova, NY ;
Pokrovsky, LD .
SOLID STATE COMMUNICATIONS, 2005, 133 (06) :347-351
[12]   Nb 3d and O 1s core levels and chemical bonding in niobates [J].
Atuchin, VV ;
Kalabin, IE ;
Kesler, VG ;
Pervukhina, NV .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2005, 142 (02) :129-134
[13]   A next-generation neutrinoless double beta decay experiment based on ZnMoO4 scintillating bolometers [J].
Beeman, J. W. ;
Danevich, F. A. ;
Degoda, V. Ya. ;
Galashov, E. N. ;
Giuliani, A. ;
Kobychev, V. V. ;
Mancuso, M. ;
Marnieros, S. ;
Nones, C. ;
Olivieri, E. ;
Pessina, G. ;
Rusconi, C. ;
Shlegel, V. N. ;
Tretyak, V. I. ;
Vasiliev, Ya. V. .
PHYSICS LETTERS B, 2012, 710 (02) :318-323
[14]   Development of enriched 106CdWO4 crystal scintillators to search for double β decay processes in 106Cd [J].
Belli, P. ;
Bernabei, R. ;
Boiko, R. S. ;
Brudanin, V. B. ;
Bukilic, N. ;
Cerulli, R. ;
Chernyak, D. M. ;
Danevich, F. A. ;
d'Angelo, S. ;
Degoda, V. Ya. ;
Dossovitskiy, A. E. ;
Galashov, E. N. ;
Hyzhnyi, Yu. A. ;
Ildyakov, S. V. ;
Incicchitti, A. ;
Kobychev, V. V. ;
Kolesnyk, O. S. ;
Kovtun, G. P. ;
Kudovbenko, V. M. ;
de Laeter, J. R. ;
Mikhlin, A. L. ;
Nagorny, S. S. ;
Nedilko, S. G. ;
Nikolaiko, A. S. ;
Nisi, S. ;
Poda, D. V. ;
Podviyanuk, R. B. ;
Polischuk, O. G. ;
Prosperi, D. ;
Shcherban, A. P. ;
Shcherbatskyi, V. P. ;
Shlegel, V. N. ;
Solopikhin, D. A. ;
Stenin, Yu. G. ;
Tretyak, V. I. ;
Vasiliev, Ya. V. ;
Virich, V. D. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 615 (03) :301-306
[15]   Radiopurity of ZnWO4 Crystal Scintillators [J].
Belli, P. ;
Bernabei, R. ;
Cappella, F. ;
Cerulli, R. ;
Danevich, F. A. ;
Dubovik, A. M. ;
d'Angelo, S. ;
Galashov, E. N. ;
Grinyov, B. V. ;
Incicchitti, A. ;
Kobychev, V. V. ;
Nagornaya, L. L. ;
Nisi, S. ;
Nozzoli, F. ;
Poda, D. V. ;
Podviyanuk, R. B. ;
Prosperi, D. ;
Shlegel, V. N. ;
Tretyak, V. I. ;
Vasiliev, Ya. V. ;
Vostretsov, Yu. Ya. .
ACTA PHYSICA POLONICA A, 2010, 117 (01) :139-142
[16]   A facile microwave solvothermal process to synthesize ZnWO4 nanoparticles [J].
Bi, Jinhong ;
Wu, Ling ;
Li, Zhaohui ;
Ding, Zhengxin ;
Wang, Xuxu ;
Fu, Xianzhi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 480 (02) :684-688
[17]   FULL-POTENTIAL, LINEARIZED AUGMENTED PLANE-WAVE PROGRAMS FOR CRYSTALLINE SYSTEMS [J].
BLAHA, P ;
SCHWARZ, K ;
SORANTIN, P ;
TRICKEY, SB .
COMPUTER PHYSICS COMMUNICATIONS, 1990, 59 (02) :399-415
[18]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[19]   Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique [J].
Borovlev, YA ;
Ivannikova, NV ;
Shlegel, VN ;
Vasiliev, YV ;
Gusev, VA .
JOURNAL OF CRYSTAL GROWTH, 2001, 229 (01) :305-311
[20]   TeO2-WO3 glasses:: Infrared, XPS and XANES structural characterizations [J].
Charton, P ;
Gengembre, L ;
Armand, P .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 168 (01) :175-183