The p-Rank of Tame Kernels of Pure Quintic Fields

被引:1
作者
Li, Yuanyuan [1 ]
Zhou, Haiyan [2 ]
Deng, Fei [2 ]
Wu, Xia [3 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
[3] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
p-rank of tame kernels; pure quintic fields; ideal class groups; CUBIC CYCLIC FIELDS; NUMBER-FIELDS; QUADRATIC FIELDS; 2-SYLOW SUBGROUPS; K2OF;
D O I
10.1142/S1005386718000196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a pure quintic field. In this paper, we present some results for the p-rank of K2OF, where p is an odd prime number. In particular, the 5-rank of K2OF is studied by the reflection theorem. Some explicit results on the 5-rank of K2OF are given in some special cases.
引用
收藏
页码:277 / 284
页数:8
相关论文
共 15 条
[1]  
Browkin J, 2005, MATH COMPUT, V74, P967
[2]  
BROWKIN J, 1992, J REINE ANGEW MATH, V432, P135
[3]   Tame kernels of pure cubic fields [J].
Cheng, Xiao Yun .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (04) :771-780
[4]   The 3-ranks of tame kernels of cubic cyclic number fields [J].
Guo, Xuejun .
ACTA ARITHMETICA, 2007, 129 (04) :389-395
[5]  
Keune F., 1989, K-Theory, V2, P625, DOI DOI 10.1007/BF005350495
[6]   On the 3-rank of tame kernels of certain pure cubic number fields [J].
Li YuanYuan ;
Qin HouRong .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (09) :2381-2394
[7]   CLASS NUMBER OF PURE FIELDS OF PRIME DEGREE [J].
PARRY, CJ ;
WALTER, CD .
MATHEMATIKA, 1976, 23 (46) :220-226
[8]   Reflection theorems and the p-Sylow subgroup of K2OF for a number field F [J].
Qin, Hourong .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (07) :1181-1192
[9]  
QIN HR, 1995, ACTA ARITH, V69, P153
[10]  
QIN HR, 1995, ACTA ARITH, V72, P323