Simple and robust calibration procedure for k-linearization and dispersion compensation in optical coherence tomography

被引:34
作者
Attendu, Xavier [1 ,2 ]
Ruis, Roosje M. [1 ]
Boudoux, Caroline [2 ]
van Leeuwen, Ton G. [1 ]
Faber, Dirk J. [1 ]
机构
[1] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Biomed Engn & Phys, Amsterdam, Netherlands
[2] Polytech Montreal, Ctr Opt Photon & Lasers, Dept Engn Phys, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
optical coherence tomography; calibration; k-linearization; dispersion compensation; signal processing; DUAL-FIBER STRETCHER; HIGH-SPEED; ULTRAHIGH-RESOLUTION; WAVE-NUMBER; 3RD-ORDER; PHASE; SCAN;
D O I
10.1117/1.JBO.24.5.056001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In Fourier-domain optical coherence tomography (FD-OCT), proper signal sampling and dispersion compensation are essential steps to achieve optimal axial resolution. These calibration steps can be performed through numerical signal processing, but require calibration information about the system that may require lengthy and complex measurement protocols. We report a highly robust calibration procedure that can simultaneously determine correction vectors for nonlinear wavenumber sampling and dispersion compensation. The proposed method requires only two simple mirror measurements and no prior knowledge about the system's illumination source or detection scheme. This method applies to both spectral domain and swept-source OCT systems. Furthermore, it may be implemented as a low-cost fail-safe to validate the proper function of calibration hardware such as k-clocks. We demonstrate the method's simple implementation, effectiveness, and robustness on both types of OCT systems. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
引用
收藏
页数:11
相关论文
共 30 条
  • [1] [Anonymous], 2008, OPTICAL COHERENCE TO
  • [2] HIGH-RESOLUTION OPTICAL COHERENCE TOMOGRAPHIC IMAGING USING A MODE-LOCKED TI-AL2O3 LASER SOURCE
    BOUMA, B
    TEARNEY, GJ
    BOPPART, SA
    HEE, MR
    BREZINSKI, ME
    FUJIMOTO, JG
    [J]. OPTICS LETTERS, 1995, 20 (13) : 1486 - 1488
  • [3] Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography
    Cense, B
    Nassif, NA
    Chen, T
    Pierce, M
    Yun, SH
    Park, BH
    Bouma, BE
    Tearney, GJ
    de Boer, JF
    [J]. OPTICS EXPRESS, 2004, 12 (11): : 2435 - 2447
  • [4] Dispersion management up to the third order for real-time optical coherence tomography involving a phase or frequency modulator
    Chen, YC
    Li, XD
    [J]. OPTICS EXPRESS, 2004, 12 (24): : 5968 - 5978
  • [5] Spectral resolution and sampling issues in Fourier-transform spectral interferometry
    Dorrer, C
    Belabas, N
    Likforman, JP
    Joffre, M
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2000, 17 (10) : 1795 - 1802
  • [6] Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings
    Eom, Tae Joong
    Ahn, Yeh-Chan
    Kim, Chang-Seok
    Chen, Zhongping
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (03)
  • [7] Doppler calibration method for Spectral Domain OCT spectrometers
    Faber, Dirk J.
    van Leeuwen, Ton G.
    [J]. JOURNAL OF BIOPHOTONICS, 2009, 2 (6-7) : 407 - 415
  • [8] Dual-fibre stretcher and coma as tools for independent 2nd and 3rd order tunable dispersion compensation in a fibre-based 'scan-free' time domain optical coherence tomography system
    Froehly, Luc
    Iyer, Sairam
    Vanholsbeeck, Frederique
    [J]. OPTICS COMMUNICATIONS, 2011, 284 (16-17) : 4099 - 4106
  • [9] Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers
    Gaigalas, A. K.
    Wang, Lili
    He, Hua-Jun
    DeRose, Paul
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2009, 114 (04) : 215 - 228
  • [10] Dispersion effects in partial coherence interferometry: Implications for intraocular ranging
    Hitzenberger, CK
    Baumgartner, A
    Drexler, W
    Fercher, AF
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 1999, 4 (01) : 144 - 151