GRAPH-CUT-BASED NODE EMBEDDING FOR DIMENSIONALITY REDUCTION AND CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES

被引:3
作者
Su, Yuanchao [1 ]
Jiang, Mengying [2 ]
Gao, Lianru [3 ]
You, Xueer [1 ]
Sun, Xu [3 ]
Li, Pengfei [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Geomat, Xian 710054, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
基金
中国国家自然科学基金;
关键词
Hyperspectral Image Classification; Dimensionality Reduction; Node Embedding; Graph Theory; EXTREME LEARNING-MACHINE;
D O I
10.1109/IGARSS46834.2022.9883902
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Dimensionality reduction (DR) is a common preprocessing technology for hyperspectral images (HSIs). Recently, many neural networks can implement DR to remove the redundant information by node embedding. However, numerous hidden-layer parameters limit the generalization ability of the node embedding. In this paper, we develop a graph-cut-based node embedding (GCNE) that can be used for DR of HSIs. The embedding can refine correlations by a graph-cut strategy, and it can avoid numerous parameters when using graph models. Moreover, we combine the graph-cut strategy and extreme learning machine (ELM) to achieve HSI classification. The effectiveness of the proposed method is verified by using real HSIs. Compared with other state-of-the-art DR and classification methods, the proposed approach demonstrates very competitive performance.
引用
收藏
页码:1720 / 1723
页数:4
相关论文
共 16 条
[1]   Advances in Hyperspectral Image Classification [J].
Camps-Valls, Gustavo ;
Tuia, Devis ;
Bruzzone, Lorenzo ;
Benediktsson, Jon Atli .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :45-54
[2]  
Chen GL, 2018, INT C PATT RECOG, P314, DOI 10.1109/ICPR.2018.8546193
[3]   Advanced Spectral Classifiers for Hyperspectral Images A review [J].
Ghamisi, Pedram ;
Plaza, Javier ;
Chen, Yushi ;
Li, Jun ;
Plaza, Antonio .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2017, 5 (01) :8-32
[4]   Graph Convolutional Networks for Hyperspectral Image Classification [J].
Hong, Danfeng ;
Gao, Lianru ;
Yao, Jing ;
Zhang, Bing ;
Plaza, Antonio ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07) :5966-5978
[5]   Interpretable Hyperspectral Artificial Intelligence: When nonconvex modeling meets hyperspectral remote sensing [J].
Hong, Danfeng ;
He, Wei ;
Yokoya, Naoto ;
Yao, Jing ;
Gao, Lianru ;
Zhang, Liangpei ;
Chanussot, Jocelyn ;
Zhu, Xiaoxiang .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (02) :52-87
[6]   Extreme Learning Machine for Regression and Multiclass Classification [J].
Huang, Guang-Bin ;
Zhou, Hongming ;
Ding, Xiaojian ;
Zhang, Rui .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02) :513-529
[7]   Random Subspace Ensemble With Enhanced Feature for Hyperspectral Image Classification [J].
Jiang, Mengying ;
Fang, Yi ;
Su, Yuanchao ;
Cai, Guofa ;
Han, Guojun .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) :1373-1377
[8]   Extreme Learning Machine With Enhanced Composite Feature for Spectral-Spatial Hyperspectral Image Classification [J].
Jiang, Mengying ;
Cao, Faxian ;
Lu, Yunmeng .
IEEE ACCESS, 2018, 6 :22645-22654
[9]   Spectral Embedded Clustering: A Framework for In-Sample and Out-of-Sample Spectral Clustering [J].
Nie, Feiping ;
Zeng, Zinan ;
Tsang, Ivor W. ;
Xu, Dong ;
Zhang, Changshui .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (11) :1796-1808
[10]   Deep Autoencoders With Multitask Learning for Bilinear Hyperspectral Unmixing [J].
Su, Yuanchao ;
Xu, Xiang ;
Li, Jun ;
Qi, Hairong ;
Gamba, Paolo ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10) :8615-8629