Graphene oxide for rapid determination of testosterone in the presence of cetyltrimethylammonium bromide in urine and blood plasma of athletes

被引:29
作者
Heidarimoghadam, Rashid [1 ,2 ]
Akhavan, Omid [3 ,4 ]
Ghaderi, Elham [3 ,4 ]
Hashemi, Ehsan [5 ,6 ]
Mortazavi, Seyede Shima [7 ]
Farmany, Abbas [7 ]
机构
[1] Hamedan Univ Med Sci, Dept Ergon, Hamadan, Iran
[2] Hamedan Univ Med Sci, Res Ctr Hlth Sci, Hamadan, Iran
[3] Sharif Univ Technol, Dept Phys, POB 11155-9161, Tehran, Iran
[4] Sharif Univ Technol, Inst Nanosci & Nanotechnol, POB 14588-89694, Tehran, Iran
[5] Natl Inst Genet Engn & Biotechnol, Natl Res Ctr Transgen Mouse, POB 14965-161, Tehran, Iran
[6] Natl Inst Genet Engn & Biotechnol, Anim Biotechnol Div, POB 14965-161, Tehran, Iran
[7] Islamic Azad Univ, Hamedan Branch, Dept Chem, Hamadan, Iran
来源
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2016年 / 61卷
关键词
Testosterone; Biological fluids; Cetyltrimethylammonium bromide; Graphene; ADSORPTIVE STRIPPING VOLTAMMETRY; ANABOLIC-STEROIDS; FILM ELECTRODE; PHARMACEUTICALS; OXIDATION; SHEETS; LAYER;
D O I
10.1016/j.msec.2015.12.005
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Electro-reduction behavior of testosterone at reduced graphene oxide/glassy carbon electrode (rGO/GCE) was studied. Cationic surfactant cetyltrimethylammonium bromide (CTAB) enhanced the reduction peak of testosterone. In borate buffer (pH 5.4) CTAB-testosterone showed a reduction peak at -1.1 V (versus, Ag/AgCl). The increment of peak current obtained by deducting the reduction peak current of the CTAB-testosterone was rectilinear with testosterone concentration in the range of 2.0 to 210.0 nM, with a detection limit of 0.1 nM. The sensor was used for quantification of testosterone in biological fluids and drug. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 250
页数:5
相关论文
共 35 条
[1]   Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner [J].
Akhavan, O. ;
Ghaderi, E. .
CARBON, 2012, 50 (05) :1853-1860
[2]   The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets [J].
Akhavan, O. .
CARBON, 2010, 48 (02) :509-519
[3]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[4]   Temperature dependence of the Raman spectra of graphene and graphene multilayers [J].
Calizo, I. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
NANO LETTERS, 2007, 7 (09) :2645-2649
[5]   Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis [J].
Cracknell, James A. ;
Vincent, Kylie A. ;
Armstrong, Fraser A. .
CHEMICAL REVIEWS, 2008, 108 (07) :2439-2461
[6]   Melatonin as a powerful bio-antioxidant for reduction of graphene oxide [J].
Esfandiar, A. ;
Akhavan, O. ;
Irajizad, A. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (29) :10907-10914
[7]   Electrochemical investigations of corticosteroid isomers-testosterone and epitestosterone and their simultaneous determination in human urine [J].
Goyal, Rajendra N. ;
Gupta, Vinod K. ;
Chatterjee, Sanghamitra .
ANALYTICA CHIMICA ACTA, 2010, 657 (02) :147-153
[8]   Spatially resolved raman spectroscopy of single- and few-layer graphene [J].
Graf, D. ;
Molitor, F. ;
Ensslin, K. ;
Stampfer, C. ;
Jungen, A. ;
Hierold, C. ;
Wirtz, L. .
NANO LETTERS, 2007, 7 (02) :238-242
[9]   Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries [J].
Guo, Peng ;
Song, Huaihe ;
Chen, Xiaohong .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (06) :1320-1324
[10]   General Approach to Individually Dispersed, Highly Soluble, and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry [J].
He, Hongkun ;
Gao, Chao .
CHEMISTRY OF MATERIALS, 2010, 22 (17) :5054-5064