Auto-tuning of parameters in estimation and adaptive control of robots with weaker PE conditions

被引:4
作者
Ahmad, Z
Guez, A
机构
[1] Electrical and Computer Engineering Department, Drexel University, Philadelphia
关键词
adaptive control; parameter estimation; parameter identification; persistent excitation; robotics;
D O I
10.1109/9.650027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge of the system parameters is necessary for optimum performance of the system, A new class of parameter estimation and adaptive control algorithms was shown in [6], which was applied to the robotic system. These algorithms require relaxed conditions of persistent excitation for parameter convergence, Here we propose an enhancement of these algorithms via improved initialization resulting from sliding surface in parameter error space, As a result we achieve faster convergence of parameters with proper initialization, Examples giving quantitative results from the robotics systems are provided, comparing the results with the original algorithms and a classical approach of a gradient-type algorithm.
引用
收藏
页码:1726 / 1730
页数:5
相关论文
共 5 条