Homological perturbation theory and mirror symmetry

被引:3
作者
Zhou, J [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
homological perturbation theory; mirror symmetry;
D O I
10.1007/s10114-003-0283-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explain how deformation theories of geometric objects such as complex structures, Poisson structures and holomorphic bundle structures lead to differential Gerstenhaber or Poisson algebras. We use homological perturbation theory to construct A. algebra structures on the cohomology, and their canonically defined deformations. Such constructions are used to formulate a version of A(infinity) algebraic mirror symmetry.
引用
收藏
页码:695 / 714
页数:20
相关论文
共 46 条
  • [1] [Anonymous], 1978, Principles of algebraic geometry
  • [2] Barannikov S, 1998, INT MATH RES NOTICES, V1998, P201
  • [3] Theory of Kahler gravity
    Bershadsky, M
    Sadov, V
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (26): : 4689 - 4730
  • [4] KODAIRA-SPENCER THEORY OF GRAVITY AND EXACT RESULTS FOR QUANTUM STRING AMPLITUDES
    BERSHADSKY, M
    CECOTTI, S
    OOGURI, H
    VAFA, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) : 311 - 427
  • [5] Bogomolov F., 1978, SOV MATH DOKL, V19, P1462
  • [6] Brown R., 1967, CELEBRAZIONI ARCH SE, P34
  • [7] A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY
    CANDELAS, P
    DELAOSSA, XC
    GREEN, PS
    PARKES, L
    [J]. NUCLEAR PHYSICS B, 1991, 359 (01) : 21 - 74
  • [8] Frobenius manifold structure on Dolbeault cohomology and mirror symmetry
    Cao, HD
    Zhou, J
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2000, 8 (04) : 795 - 808
  • [9] CAO HD, DG9904168
  • [10] CAO HD, 1998, 1 INT C CHIN MATH BE, P279