Resistance gene analogues (RGAs) of Cicer were isolated by different PCR approaches and mapped in an inter-specific cross segregating for fusarium wilt by RFLP and CAPS analysis. Initially, two pairs of degenerate primers targeting sequences encoded at nucleotide-binding sites (NBS), which are conserved in plant disease resistance genes such as RPS2, L6 and N, were selected for amplification. Cloning and sequence analysis of amplified products from C arietinum DNA revealed eight different RGAs. Additionally, five RGAs were identified after characterisation of the presumptive RGA alleles from C. reticulatum. Therefore, a total of 13 different RGAs were isolated from Cicer and classified through pair-wise comparison into nine distinct classes with sequence similarities below a 68% amino acid identity threshold. Sequence comparison of seven RGA alleles of C arietinum and C. reticulatum revealed polymorphisms in four RGAs with identical numbers of synonymous and non-synonymous substitutions. An NlaIII site, unique in the RGA-A allele of C. arietinum, was exploited for CAPS analysis. Genomic organisation and map position of the NBS-LRR candidate resistance genes was probed by RFLP analysis. Both single-copy as well as multi-copy sequence families were present for the selected RGAs, which represented eight different classes. Five RGAs were mapped in an inter-specific population segregating for three race-specific Fusarium resistances. All RGAs mapped to four of the previously established eight linkage groups for chickpea. Two NBS-LRR clusters were identified that could not be resolved in our mapping population. One of these clusters, which is characterised by RFLP probe CaRGA-D, mapped to the linkage group harbouring two of three Fusarium resistance genes characterised in the inter-specific population. Our study provides a starting point for the characterisation and genetic mapping of candidate resistance genes in Cicer that is useful for marker-assisted selection and as a pool for resistance genes of Cicer.