A Novel Agarolytic β-Galactosidase Acts on Agarooligosaccharides for Complete Hydrolysis of Agarose into Monomers

被引:65
作者
Lee, Chan Hyoung [1 ]
Kim, Hee Taek [2 ]
Yun, Eun Ju [1 ]
Lee, Ah Reum [1 ]
Kim, Sa Rang [3 ]
Kim, Jae-Han [3 ]
Choi, In-Geol [1 ]
Kim, Kyoung Heon [1 ]
机构
[1] Korea Univ, Grad Sch, Dept Biotechnol, Seoul, South Korea
[2] Korea Res Inst Chem Technol, Res Ctr Biobased Chem, Taejon 305606, South Korea
[3] Chungnam Natl Univ, Dept Food & Nutr, Taejon, South Korea
关键词
MARINE BACTERIUM; ACID-HYDROLYSIS; ALPHA-AGARASE; PURIFICATION; FERMENTATION; 3,6-ANHYDRO-L-GALACTOSE; SYSTEM; ENZYME; HYDROLASE; GALACTANS;
D O I
10.1128/AEM.01577-14
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Marine red macroalgae have emerged to be renewable biomass for the production of chemicals and biofuels, because carbohydrates that form the major component of red macroalgae can be hydrolyzed into fermentable sugars. The main carbohydrate in red algae is agarose, and it is composed of D-galactose and 3,6-anhydro-L-galactose (AHG), which are alternately bonded by beta 1-4 and alpha 1-3 linkages. In this study, a novel beta-galactosidase that can act on agarooligosaccharides (AOSs) to release galactose was discovered in a marine bacterium (Vibrio sp.strain EJY3); the enzyme is annotated as Vibrio sp. EJY3 agarolytic beta-galactosidase (VejABG). Unlike the lacZ-encoded beta-galactosidase from Escherichia coli, VejABG does not hydrolyze common substrates like lactose and can act only on the galactose moiety at the nonreducing end of AOS. The optimum pH and temperature of VejABG on an agarotriose substrate were 7 and 35 degrees C, respectively. Its catalytic efficiency with agarotriose was also similar to that with agaropentaose or agaroheptaose. Since agarotriose lingers as the unreacted residual oligomer in the currently available saccharification system using beta-agarases and acid prehydrolysis, the agarotriose-hydrolyzing capability of this novel beta-galactosidase offers an enormous advantage in the saccharification of agarose or agar in red macroalgae for its use as a biomass feedstock for fermentable sugar production.
引用
收藏
页码:5965 / 5973
页数:9
相关论文
共 33 条
[1]   Update on activities at the Universal Protein Resource (UniProt) in 2013 [J].
Apweiler, Rolf ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alam-Faruque, Yasmin ;
Alpi, Emanuela ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Casanova, Elisabet Barrera ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chan, Wei Mun ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dimmer, Emily ;
Fazzini, Francesco ;
Gane, Paul ;
Fedotov, Alexander ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Jacobsen, Julius ;
Jones, Rachel ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightingale, Andrew ;
Orchard, Sandra ;
Patient, Samuel ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Sawford, Tony ;
Sehra, Harminder ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D43-D47
[2]   STRUCTURE OF THE AGAROSE CONSTITUENT OF AGAR-AGAR [J].
ARAKI, C .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1956, 29 (04) :543-544
[3]   The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics [J].
Cantarel, Brandi L. ;
Coutinho, Pedro M. ;
Rancurel, Corinne ;
Bernard, Thomas ;
Lombard, Vincent ;
Henrissat, Bernard .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D233-D238
[4]  
Chen HM, 2005, FOOD TECHNOL BIOTECH, V43, P29
[5]  
CRAVEN GR, 1965, J BIOL CHEM, V240, P2468
[6]   Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40 [J].
Ekborg, Nathan A. ;
Taylor, Larry E. ;
Longmire, Atkinson G. ;
Henrissat, Bernard ;
Weiner, Ronald M. ;
Hutcheson, Steven W. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (05) :3396-3405
[7]   Purification and characterization of a novel β-agarase, AgaA34, from Agarivorans albus YKW-34 [J].
Fu, Xiao Ting ;
Lin, Hong ;
Kim, Sang Moo .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 78 (02) :265-273
[8]   A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development [J].
Goh, Chun Sheng ;
Lee, Keat Teong .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :842-848
[9]   Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40 [J].
Ha, Sung Chul ;
Lee, Saeyoung ;
Lee, Jonas ;
Kim, Hee Taek ;
Ko, Hyeok-Jin ;
Kim, Kyoung Heon ;
Choi, In-Geol .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2011, 412 (02) :238-244
[10]   Biochemical and Structural Characterization of the Complex Agarolytic Enzyme System from the Marine Bacterium Zobellia galactanivorans [J].
Hehemann, Jan-Hendrik ;
Correc, Gaelle ;
Thomas, Francois ;
Bernard, Thomas ;
Barbeyron, Tristan ;
Jam, Murielle ;
Helbert, William ;
Michel, Gurvan ;
Czjzek, Mirjam .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (36) :30571-30584