Nonlocal Operational Calculi for Dunkl Operators

被引:8
作者
Dimovski, Ivan H. [1 ]
Hristov, Valentin Z. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
关键词
Dunkl operator; right inverse operator; Dunkl-Appell polynomials; convolution; multiplier; multiplier fraction; Dunkl equation; nonlocal Cauchy problem; Heaviside algorithm; mean-periodic function; REFLECTION GROUPS; POLYNOMIALS; FORMULA;
D O I
10.3842/SIGMA.2009.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The one-dimensional Dunkl operator D-k with a non-negative parameter k, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of Dk, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations P(D-k)u = f with a given polynomial P is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.
引用
收藏
页数:16
相关论文
共 16 条
[1]   Mean-periodic functions associated with the Dunkl operators [J].
Ben Salem, N ;
Kallel, S .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (02) :155-179
[2]  
Betancor JJ., 2006, MATH SCI RES J, V10, P66
[3]  
BITTNER R, 1961, STUD MATH, V20, P1
[4]  
DELSARTE J, 1935, J MATH PURE APPL, V14, P403
[5]  
DIMOVSKI I, 2006, FRACT CALC APPL ANAL, V9, P195
[6]  
Dimovski I.H., 1990, CONVOLUTIONAL CALCUL
[7]  
DIMOVSKI IH, 1995, P STEKLOV I MATH, V203, P53
[9]  
Larsen R., 1971, INTRO THEORY MULTIPL
[10]  
MARGIT Rosler, 1994, P OB, P292