An experimental and theoretical comparison of CCNBD and CCNSCB specimens for determining mode I fracture toughness of rocks

被引:52
|
作者
Wei, M. -D. [1 ]
Dai, F. [1 ]
Liu, Y. [1 ]
Xu, N. -W. [1 ]
Zhao, T. [1 ]
机构
[1] Sichuan Univ, Coll Water Resource & Hydropower, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Brazilian disc; chevron notch; fracture process zone; fracture toughness; semicircular bend; BRAZILIAN DISC SPECIMEN; STRAIN-ENERGY DENSITY; SEMICIRCULAR BEND SPECIMENS; STRESS INTENSITY FACTORS; V-NOTCHED COMPONENTS; BRITTLE-FRACTURE; SUGGESTED METHOD; CHEVRON; SIZE; GEOMETRY;
D O I
10.1111/ffe.12747
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The cracked chevron notched Brazilian disc (CCNBD) specimen, suggested by the International Society for Rock Mechanics for testing mode I fracture toughness of rocks, usually yields rather conservative toughness measurements, and the reasons have not been fully explored. In this study, the CCNBD method is compared with the cracked chevron notched semicircular bending (CCNSCB) method in the fracture process zone (FPZ) and its influence on the fracture toughness measurement. Theoretical analysis reveals that the FPZ is longer in the CCNBD specimen than in the CCNSCB specimen using a relatively large support span, the toughness measurement using the former is affected more seriously by the presence of FPZ, and thus the CCNBD method is usually, more or less, conservative compared with the CCNSCB method. These inferences are further validated by experimental results, which indicate that the CCNBD test indeed produces much lower fracture toughness values and even the results of 75-mm radius CCNBD specimens are still lower than those of 25-mm radius CCNSCB specimens. Consequently, due to smaller FPZ, the CCNSCB specimen with a relatively large span is more likely to produce comparably accurate or representative toughness value, and it may be more suitable than the CCNBD specimen for the engineering applications that require more representative or less conservative fracture toughness.
引用
收藏
页码:1002 / 1018
页数:17
相关论文
共 50 条
  • [1] An experimental and theoretical assessment of semi-circular bend specimens with chevron and straight-through notches for mode I fracture toughness testing of rocks
    Wei, Ming-Dong
    Dai, Feng
    Xu, Nu-Wen
    Zhao, Tao
    Liu, Yi
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2017, 99 : 28 - 38
  • [2] Experimental and numerical investigation into the methods of determination of mode I static fracture toughness of rocks
    Pakdaman, A. M.
    Moosavi, M.
    Mohammadi, S.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2019, 100 : 154 - 170
  • [3] Numerical investigation of the progressive fracture mechanisms of four ISRM-suggested specimens for determining the mode I fracture toughness of rocks
    Dai, F.
    Wei, M. D.
    Xu, N. W.
    Zhao, T.
    Xu, Y.
    COMPUTERS AND GEOTECHNICS, 2015, 69 : 424 - 441
  • [4] A novel chevron notched short rod bend method for measuring the mode I fracture toughness of rocks
    Wei, Ming-Dong
    Dai, Feng
    Xu, Nu-Wen
    Liu, Yi
    Zhao, Tao
    ENGINEERING FRACTURE MECHANICS, 2018, 190 : 1 - 15
  • [5] A new development cracked chevron notched direct tension method for determining the mode I fracture toughness of rocks
    Hadei, Mir Raouf
    Akbarlou, Neda
    Nejati, Hamid Reza
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 110
  • [6] Experimental and Numerical Study on the Cracked Chevron Notched Semi-Circular Bend Method for Characterizing the Mode I Fracture Toughness of Rocks
    Wei, Ming-Dong
    Dai, Feng
    Xu, Nu-Wen
    Liu, Jian-Feng
    Xu, Yuan
    ROCK MECHANICS AND ROCK ENGINEERING, 2016, 49 (05) : 1595 - 1609
  • [7] Machine learning approaches for predicting rock mode I fracture toughness: Insights from ISRM suggested CCNBD and SCB tests
    Yang, Yuezong
    Shao, Zhushan
    Wu, Kui
    Zhao, Nannan
    Wang, Yujie
    ENGINEERING FRACTURE MECHANICS, 2025, 318
  • [8] Prediction of Mode I Fracture Toughness of Shale Specimens by Different Fracture Theories Considering Size Effect
    Xie, Qin
    Liu, Xiling
    Li, Shengxiang
    Du, Kun
    Gong, Fengqiang
    Li, Xibing
    ROCK MECHANICS AND ROCK ENGINEERING, 2022, 55 (11) : 7289 - 7306
  • [9] Fracture toughness analysis of HCCD specimens of Longmaxi shale subjected to mixed mode I-II loading
    Wang, Hui
    Li, Yong
    Cao, Shugang
    Fantuzzi, Nicholas
    Pan, Ruikai
    Tian, Mengyun
    Liu, Yanbao
    Yang, Hongyun
    ENGINEERING FRACTURE MECHANICS, 2020, 239
  • [10] Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion
    Wei, Ming-Dong
    Dai, Feng
    Xu, Nu-Wen
    Liu, Yi
    Zhao, Tao
    ENGINEERING FRACTURE MECHANICS, 2017, 186 : 21 - 38