ON NUMERICAL APPROXIMATION OF THE HAMILTON-JACOBI-TRANSPORT SYSTEM ARISING IN HIGH FREQUENCY APPROXIMATIONS

被引:5
作者
Achdou, Yves [1 ]
Camilli, Fabio [2 ]
Corrias, Lucilla [3 ]
机构
[1] Univ Paris Diderot, Lab Jacques Louis Lions, UMR 7598, UPMC,CNRS,Sorbonne Paris Cite, F-75205 Paris, France
[2] Univ Roma La Sapienza, Dip Sci Base & Applicate Ingn, I-0161 Rome, Italy
[3] Univ Evry Val dEssonne, Lab Anal & Probabilite, F-91037 Evry, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2014年 / 19卷 / 03期
关键词
Hamilton-Jacobi equation; transport equation; viscosity solutions; measure solutions; semiconcavity; numerical approximations; OSL condition; VISCOSITY SOLUTIONS; EQUATIONS; SCHEMES; TRANSFORM;
D O I
10.3934/dcdsb.2014.19.629
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present article, we study the numerical approximation of a system of Hamilton-Jacobi and transport equations arising in geometrical optics. We consider a semi-Lagrangian scheme. We prove the well posedness of the discrete problem and the convergence of the approximated solution toward the viscosity-measure valued solution of the exact problem.
引用
收藏
页码:629 / 650
页数:22
相关论文
共 29 条
[1]  
[Anonymous], 1992, Bull. Amer. Math. Soc.
[2]  
[Anonymous], 2004, PROGR NONLINEAR DIFF
[3]  
Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
[4]   On the system of Hamilton-Jacobi and transport equations arising in geometrical optics [J].
Ben Moussa, B ;
Kossioris, GT .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :1085-1111
[5]   ONE-DIMENSIONAL TRANSPORT EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
Bouchut, F. ;
James, F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (07) :891-933
[6]  
BRENIER Y, 1989, CR ACAD SCI I-MATH, V308, P587
[7]  
Cardaliaguet P., NOTES MEAN FIELS GAM
[8]  
Carles R., 2008, Semi-Classical Analysis for Nonlinear Schrodinger Equations
[9]  
CORRIAS L, 1995, MATH COMPUT, V64, P555, DOI 10.1090/S0025-5718-1995-1265013-5