Electron scattering at interfaces in nano-scale vertical interconnects: A combined experimental and ab initio study

被引:17
作者
Lanzillo, Nicholas A. [1 ]
Restrepo, Oscar D. [2 ]
Bhosale, Prasad S. [1 ]
Cruz-Silva, Eduardo [2 ]
Yang, Chih-Chao [1 ]
Kim, Byoung Youp [2 ]
Spooner, Terry [1 ]
Standaert, Theodorus [1 ]
Child, Craig [2 ]
Bonilla, Griselda [1 ,3 ]
Murali, Kota V. R. M. [2 ]
机构
[1] IBM Res, Albany Nanotech, 257 Fuller Rd, Albany, NY 12203 USA
[2] GLOBALFOUNDRIES, 400 Stone Break Rd Extension, Malta, NY 12020 USA
[3] IBM TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
关键词
CONDUCTIVITY; RESISTIVITY; ALPHA; FILMS; BETA; 1ST-PRINCIPLES; DEPOSITION; GROWTH; COPPER;
D O I
10.1063/1.5027096
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a combined theoretical and experimental study on the electron transport characteristics across several representative interface structures found in back-end-of-line interconnect stacks for advanced semiconductor manufacturing: Cu/Ta(N)/Co/Cu and Cu/Ta(N)/Ru/Cu. In particular, we evaluate the impact of replacing a thin TaN barrier with Ta while considering both Co and Ru as wetting layers. Both theory and experiment indicate a pronounced reduction in vertical resistance when replacing TaN with Ta, regardless of whether a Co or Ru wetting layer is used. This indicates that a significant portion of the total vertical resistance is determined by electron scattering at the Cu/Ta(N) interface. The electronic structure of these nano-sized interconnects is analyzed in terms of the atom-resolved projected density of states and k-resolved transmission spectra at the Fermi level. This work further develops a fundamental understanding of electron transport and material characteristics in nano-sized interconnects. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 35 条
  • [1] Density-functional method for nonequilibrium electron transport -: art. no. 165401
    Brandbyge, M
    Mozos, JL
    Ordejón, P
    Taylor, J
    Stokbro, K
    [J]. PHYSICAL REVIEW B, 2002, 65 (16) : 1654011 - 16540117
  • [2] Reducing Grain-Boundary Resistivity of Copper Nanowires by Doping
    Cesar, Mathieu
    Gall, Daniel
    Guo, Hong
    [J]. PHYSICAL REVIEW APPLIED, 2016, 5 (05):
  • [3] Calculated Resistances of Single Grain Boundaries in Copper
    Cesar, Mathieu
    Liu, Dongping
    Gall, Daniel
    Guo, Hong
    [J]. PHYSICAL REVIEW APPLIED, 2014, 2 (04):
  • [4] THE RELATIONSHIP BETWEEN DEPOSITION CONDITIONS, THE BETA TO ALPHA PHASE-TRANSFORMATION, AND STRESS-RELAXATION IN TANTALUM THIN-FILMS
    CLEVENGER, LA
    MUTSCHELLER, A
    HARPER, JME
    CABRAL, C
    BARMAK, K
    [J]. JOURNAL OF APPLIED PHYSICS, 1992, 72 (10) : 4918 - 4924
  • [5] First-Principles Investigations of TiGe/Ge Interface and Recipes to Reduce the Contact Resistance
    Dixit, Hemant
    Niu, Chengyu
    Raymond, Mark
    Kamineni, Vimal
    Pandey, Rajan K.
    Konar, Anirudhha
    Fronheiser, Jody
    Carr, Adra V.
    Oldiges, Phil
    Adusumilli, Praneet
    Lanzillo, Nicholas A.
    Miao, Xin
    Sahu, Bhagawan
    Benistant, Francis
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (09) : 3775 - 3780
  • [6] Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering
    Feldman, Baruch
    Park, Seongjun
    Haverty, Michael
    Shankar, Sadasivan
    Dunham, Scott T.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (07): : 1791 - 1796
  • [7] Calculation of Cu/Ta interface electron transmission and effect on conductivity in nanoscale interconnect technology
    Feldman, Baruch
    Dunham, Scott T.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (22)
  • [8] The conductivity of thin metallic films according to the electron theory of metals
    Fuchs, K
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1938, 34 : 100 - 108
  • [9] International Technology Roadmap for Semiconductors (ITRS), 2013, INT SECT
  • [10] Electron transport properties of sub-3-nm diameter copper nanowires
    Jones, Sarah L. T.
    Sanchez-Soares, Alfonso
    Plombon, John J.
    Kaushik, Ananth P.
    Nagle, Roger E.
    Clarke, James S.
    Greer, James C.
    [J]. PHYSICAL REVIEW B, 2015, 92 (11)