Hopf Bifurcations of a Stochastic Fractional-Order Van der Pol System

被引:1
|
作者
Liu, Xiaojun [1 ,2 ]
Hong, Ling [1 ]
Yang, Lixin [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[2] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERALIZED POLYNOMIAL CHAOS; DUFFING SYSTEM; DIFFERENTIAL-EQUATIONS; VANDERPOL OSCILLATOR; SYNCHRONIZATION; APPROXIMATION; UNCERTAINTY; EXPANSIONS;
D O I
10.1155/2014/835482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hopf bifurcation of a fractional-order Van der Pol (VDP for short) system with a random parameter is investigated. Firstly, the Chebyshev polynomial approximation is applied to study the stochastic fractional-order system. Based on the method, the stochastic system is reduced to the equivalent deterministic one, and then the responses of the stochastic system can be obtained by numerical methods. Then, according to the existence conditions of Hopf bifurcation, the critical parameter value of the bifurcation is obtained by theoretical analysis. Then, numerical simulations are carried out to verify the theoretical results.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Stochastic response of fractional-order van der Pol oscillator
    Chen, Lincong
    Zhu, Weiqiu
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2014, 4 (01)
  • [2] Stochastic response of fractional-order van der Pol oscillator
    Lincong Chen
    Weiqiu Zhu
    Theoretical & Applied Mechanics Letters, 2014, 4 (01) : 74 - 78
  • [3] Dynamics of the fractional-order Van der Pol oscillator
    Barbosa, RS
    Machado, JAT
    Ferreira, IM
    Tar, JK
    ICCC 2004: SECOND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS, PROCEEDINGS, 2004, : 373 - 378
  • [4] Stochastic bifurcations induced by Levy noise in a fractional trirhythmic van der Pol system
    Yonkeu, R. Mbakob
    CHAOS SOLITONS & FRACTALS, 2023, 172
  • [5] Analytical solutions of nonlinear system of fractional-order Van der Pol equations
    Shankar Rao Munjam
    Rajeswari Seshadri
    Nonlinear Dynamics, 2019, 95 : 2837 - 2854
  • [6] Efficient numerical simulation of fractional-order Van der Pol impulsive system
    Sharifi, Z.
    Moghaddam, B. P.
    Ilie, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (03):
  • [7] Analytical solutions of nonlinear system of fractional-order Van der Pol equations
    Munjam, Shankar Rao
    Seshadri, Rajeswari
    NONLINEAR DYNAMICS, 2019, 95 (04) : 2837 - 2854
  • [8] Fractional-order PD control at Hopf bifurcations in a fractional-order congestion control system
    Yuhong Tang
    Min Xiao
    Guoping Jiang
    Jinxing Lin
    Jinde Cao
    Wei Xing Zheng
    Nonlinear Dynamics, 2017, 90 : 2185 - 2198
  • [9] Fractional-order PD control at Hopf bifurcations in a fractional-order congestion control system
    Tang, Yuhong
    Xiao, Min
    Jiang, Guoping
    Lin, Jinxing
    Cao, Jinde
    Zheng, Wei Xing
    NONLINEAR DYNAMICS, 2017, 90 (03) : 2185 - 2198
  • [10] Chaos in a Fractional-Order Modified Van Der Pol Oscillator
    Gao, Xin
    SPORTS MATERIALS, MODELLING AND SIMULATION, 2011, 187 : 603 - 608