From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials

被引:247
作者
Li, Yuanqing [1 ]
Samad, Yarjan Abdul [1 ]
Polychronopoulou, Kyriaki [2 ]
Alhassan, Saeed M. [3 ]
Liao, Kin [1 ]
机构
[1] Khalifa Univ Sci Technol & Res, Dept Aerosp Engn, Abu Dhabi 127788, U Arab Emirates
[2] Khalifa Univ Sci Technol & Res, Dept Mech Engn, Abu Dhabi 127788, U Arab Emirates
[3] Petr Inst, Dept Chem Engn, Abu Dhabi 2533, U Arab Emirates
关键词
PHASE-CHANGE MATERIALS; HYDROTHERMAL CARBONIZATION PROCESS; COMPOSITES; CONDUCTIVITY; BEHAVIOR; AEROGEL; CARBONS;
D O I
10.1039/c4ta00839a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate that lightweight, highly electrically conductive, and three-dimensional (3D) carbon aerogels (CAs) can be produced via a hydrothermal carbonization and post pyrolysis process using various melons as raw materials. This two-step process is a totally green synthetic method with cheap and ubiquitous biomass as the only raw material. These black-colored, highly electrically conductive and 3D structured CAs are ideal materials for energy conversion and storage. Paraffin wax was impregnated into the CA scaffold by vacuum infusion. The obtained CA-wax composites show excellent form-stable phase change behavior, with a high melting enthalpy of 115.2 J g(-1). The CA-wax composites exhibit very high solar radiation absorption over the whole UV-vis-NIR range, and 96% of light can be absorbed by the phase-change composite and stored as thermal energy. With an electrical conductivity of 3.4 S m(-1), the CA-wax composite can be triggered by low electric potential to perform energy storage and release, with an estimated electric-heat conversion efficiency of 71.4%. Furthermore, the CA-wax composites have excellent thermal stability with stable melting-freezing enthalpy and excellent reversibility. With a combination of low-cost biomass as the raw materials, a green preparation process, low density, and excellent electrical conductivity, the 3D CAs are believed to have promising potential applications in many energy-related devices.
引用
收藏
页码:7759 / 7765
页数:7
相关论文
共 50 条
  • [11] From Waste to Functional Material-Carbon Aerogels from Citrus Biomass Infiltrated with Phase Change Materials for Possible Application in Solar-Thermal Energy Conversion and Storage
    Suchorowiec, Katarzyna
    Bieda, Martyna
    Szatkowska, Martyna
    Sieradzka, Malgorzata
    Kuznia, Monika
    Ziabka, Magdalena
    Pielichowska, Kinga
    ENERGIES, 2025, 18 (04)
  • [12] Highly graphitized carbon foam to construct phase change materials composites for multiple solar-thermal energy conversion
    Ahangar, Ali Mohseni
    Rahmani, Arya
    Maleki, Mahdi
    Ahmadi, Rouhollah
    Razavi, Seyed Hossein
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 277
  • [13] Anisotropic hemp-stem-derived biochar supported phase change materials with efficient solar-thermal energy conversion and storage
    Yang, Ruiying
    Guo, Xiran
    Wu, Haotian
    Kang, Weizhi
    Song, Kun
    Li, Yaqiong
    Huang, Xiubing
    Wang, Ge
    BIOCHAR, 2022, 4 (01)
  • [14] Anisotropy-functionalized cellulose-based phase change materials with reinforced solar-thermal energy conversion and storage capacity
    Li, Yaqiong
    Chen, Yiming
    Huang, Xiubing
    Jiang, Shaohua
    Wang, Ge
    CHEMICAL ENGINEERING JOURNAL, 2021, 415
  • [15] Novel photodriven composite phase change materials with bioinspired modification of BN for solar-thermal energy conversion and storage
    Yang, Jie
    Qi, Guo-Qiang
    Tang, Li-Sheng
    Bao, Rui-Ying
    Bai, Lu
    Liu, Zheng-Ying
    Yang, Wei
    Xie, Bang-Hu
    Yang, Ming-Bo
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) : 9625 - 9634
  • [16] Thermal energy storage materials and systems for solar energy applications
    Alva, Guruprasad
    Liu, Lingkun
    Huang, Xiang
    Fang, Guiyin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 68 : 693 - 706
  • [17] Fish-inspired dynamic charging for ultrafast self-protective solar-thermal energy storage
    Li, Xiaoxiang
    Zhang, Jingyi
    Liu, Yizhe
    Xu, Yangzhe
    Xie, Yixuan
    Hu, Ting
    Fu, Benwei
    Song, Chengyi
    Shang, Wen
    Tao, Peng
    Deng, Tao
    SCIENCE ADVANCES, 2024, 10 (49):
  • [18] Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage
    Wang, Zhongyong
    Tong, Zhen
    Ye, Qinxian
    Hu, Hang
    Nie, Xiao
    Yan, Chen
    Shang, Wen
    Song, Chengyi
    Wu, Jianbo
    Wang, Jun
    Bao, Hua
    Tao, Peng
    Deng, Tao
    NATURE COMMUNICATIONS, 2017, 8
  • [19] Nickel foam/Covalent-Organic Frameworks for composite phase change materials with enhanced solar-thermal energy conversion and storage capacity
    Yang, Ruiying
    Zheng, Nannan
    Yu, Zongxing
    Zhang, Fengyuan
    Gai, Heming
    Chen, Jikun
    Huang, Xiubing
    APPLIED THERMAL ENGINEERING, 2023, 230
  • [20] Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity
    Zhang, Yuang
    Wang, Jiasheng
    Qiu, Jinjing
    Jin, Xin
    Umair, Malik Muhammad
    Lu, Rongwen
    Zhang, Shufen
    Tang, Bingtao
    APPLIED ENERGY, 2019, 237 : 83 - 90