Multi-functional biomimetic graphene induced transformation of Fe3O4 to ε-Fe2O3 at room temperature

被引:17
|
作者
Bhattacharya, Soumya [1 ]
Roychowdhury, Anirban [2 ,3 ]
Das, Dipankar [2 ]
Nayar, Suprabha [1 ]
机构
[1] CSIR, Natl Met Lab, Mat Sci & Technol Div, Jamshedpur 831007, Bihar, India
[2] UGC DAE Consortium Sci Res, Kolkata 700098, India
[3] Krishnath Coll, Dept Phys, Berhampur 742101, W Bengal, India
关键词
GIANT COERCIVE FIELD; NANOPARTICLES; PHASE; OXIDE; SIZE;
D O I
10.1039/c5ra17247k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Epsilon-iron oxide (epsilon-Fe2O3) has been synthesized in large yields (approximate to 73.7%) in a colloidal form at ambient conditions. Being embedded in biomimetic graphene, the synthesized thermodynamically unstable monoclinic phase is prevented from transforming to other phases. We have used the same protein-polymer mixture both for exfoliating natural graphite and as templating agents for iron oxide nanoparticles. X-ray diffraction of the composites confirms the formation of the epsilon-Fe2O3 phase with minor quantities (approximate to 26.3%) of cubic magnetite (Fe3O4). The particle size and distribution was studied using high resolution transmission electron microscopy which clearly shows self-assembled dense nanoparticles on graphene sheets. This exercises strain on graphene; evident from the highly broadened D and G bands of Raman measurements and the blue shifting of the G band. X-ray photoelectron spectra shows signatures of iron oxide, graphene and protein in the sample; deconvoluted C1s, O1s and N1s core level peaks confirm both the attachment of the nanoparticles with the substrate and Fe2p core level peaks reveal the high spin oxidation state of Fe3+ ions. Magnetic measurements confirm the superparamagnetic nature of the composites; the lack of coercivity unexpected of this polymorph may be explained by the low magnetocrystalline anisotropy of the randomly oriented graphene sheets. We suspect that graphene attracts the maximum ferric (Fe3+) ions of the mixed ferrous/ferric ions in the system resulting in ferrous (Fe2+) cation substitution which also results in the reduction of coercivity. Exchange bias was also observed at low temperature in this antiferro-ferrimagnetic hybrid film.
引用
收藏
页码:89488 / 89497
页数:10
相关论文
共 50 条
  • [21] Comparison of the Solubility of ZnFe2O4, Fe3O4 and Fe2O3 in High Temperature Water
    Zhang, Shenghan
    Shi, Rongxue
    Tan, Yu
    JOURNAL OF SOLUTION CHEMISTRY, 2018, 47 (06) : 1112 - 1126
  • [22] Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings
    Li, Junli
    Hu, Jing
    Xiao, Lian
    Wang, Yunqiang
    Wang, Xilong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 625 : 677 - 685
  • [23] Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties
    Wu, Hongjing
    Wu, Guanglei
    Wang, Liuding
    POWDER TECHNOLOGY, 2015, 269 : 443 - 451
  • [24] A novel hydrothermal approach for synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 mesoporous magnetic nanoparticles
    Jayanthi, S. Amala
    Nathan, D. Muthu Gnana Theresa
    Jayashainy, J.
    Sagayaraj, P.
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 162 : 316 - 325
  • [25] THE EFFECTS OF NUCLEATION AND GROWTH ON THE REDUCTION OF FE2O3 TO FE3O4
    HAYES, PC
    GRIEVESON, P
    METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1981, 12 (02): : 319 - 326
  • [26] Facile synthesis of capped γ-Fe2O3 and Fe3O4 nanoparticles
    A. B. Bourlinos
    A. Bakandritsos
    V. Georgakilas
    V. Tzitzios
    D. Petridis
    Journal of Materials Science, 2006, 41 : 5250 - 5256
  • [27] Facile synthesis of capped γ-Fe2O3 and Fe3O4 nanoparticles
    Bourlinos, A. B.
    Bakandritsos, A.
    Georgakilas, V.
    Tzitzios, V.
    Petridis, D.
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (16) : 5250 - 5256
  • [28] Nanowire structural evolution from Fe3O4 to ε-Fe2O3
    Ding, Yong
    Morber, Jenny Ruth
    Snyder, Robert L.
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (07) : 1172 - 1178
  • [29] Magnetic characteristics of Fe3O4/α-Fe2O3 hybrid cubes
    Ma, Ji
    Chen, Kezheng
    Zhang, Xiaodan
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (03)
  • [30] Solvothermal Synthesis and Characterization of Fe3O4 and γ-Fe2O3 Nanoplates
    Lu, Jian
    Jiao, Xiuling
    Chen, Dairong
    Li, Wei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (10): : 4012 - 4017