Density matrix expansion for low-momentum interactions

被引:39
作者
Bogner, S. K. [1 ,2 ]
Furnstahl, R. J. [3 ]
Platter, L. [3 ,4 ]
机构
[1] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[3] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[4] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
基金
美国国家科学基金会;
关键词
HARTREE-FOCK CALCULATIONS; EFFECTIVE-FIELD THEORY; MANY-FERMION SYSTEM; GROUND-STATE ENERGY; FUNCTIONAL THEORY; NUCLEAR-MATTER; LEGENDRE TRANSFORMATION; FINITE NUCLEI; MEAN-FIELD; MODEL;
D O I
10.1140/epja/i2008-10695-1
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A first step toward a universal nuclear energy density functional based on low-momentum interactions is taken using the density matrix expansion (DME) of Negele and Vautherin. The DME is adapted for non-local momentum space potentials and generalized to include local three-body interactions. Different prescriptions for the three-body DME are compared. Exploratory results are given at the Hartree-Fock level, along with a roadmap for systematic improvements within an effective action framework for the Kohn-Sham density functional theory.
引用
收藏
页码:219 / 241
页数:23
相关论文
共 79 条
[1]  
AHMED MW, 2007, CHIRAL DYNAMICS 2006
[2]   Density functional theory: An introduction [J].
Argaman, N ;
Makov, G .
AMERICAN JOURNAL OF PHYSICS, 2000, 68 (01) :69-79
[3]   Away from generalized gradient approximation: Orbital-dependent exchange-correlation functionals [J].
Baerends, EJ ;
Gritsenko, OV .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (06)
[4]  
Baldo M., 1999, Nuclear Methods and The Nuclear Equation of State
[5]  
BARBIERI C, ARXIVNUCLTH0608011
[6]   Density functional theory for self-bound systems [J].
Barnea, Nir .
PHYSICAL REVIEW C, 2007, 76 (06)
[7]   Ab initio density functional theory:: The best of both worlds? -: art. no. 062205 [J].
Bartlett, RJ ;
Lotrich, VF ;
Schweigert, IV .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (06)
[8]   UNRESTRICTED HARTREE-FOCK TREATMENT OF FINITE NUCLEI [J].
BASSICHIS, WH ;
KERMAN, AK ;
SVENNE, JP .
PHYSICAL REVIEW, 1967, 160 (04) :746-+
[9]   Self-consistent mean-field models for nuclear structure [J].
Bender, M ;
Heenen, PH ;
Reinhard, PG .
REVIEWS OF MODERN PHYSICS, 2003, 75 (01) :121-180
[10]  
Bertsch G.F., 2007, SCIDAC REV, V6, P42