Oxidant Sensing by Reversible Disulfide Bond Formation

被引:324
作者
Cremers, Claudia M. [1 ]
Jakob, Ursula [1 ,2 ]
机构
[1] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
PROTEIN-TYROSINE PHOSPHATASES; OXYR TRANSCRIPTION FACTOR; OXIDATIVE STRESS; HYDROGEN-PEROXIDE; GLUTAREDOXIN SYSTEMS; ESCHERICHIA-COLI; SULFENIC ACID; REDOX-SWITCH; DNA-BINDING; REACTIVE OXYGEN;
D O I
10.1074/jbc.R113.462929
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Maintenance of the cellular redox balance is crucial for cell survival. An increase in reactive oxygen, nitrogen, or chlorine species can lead to oxidative stress conditions, potentially damaging DNA, lipids, and proteins. Proteins are very sensitive to oxidative modifications, particularly methionine and cysteine residues. The reversibility of some of these oxidative protein modifications makes them ideally suited to take on regulatory roles in protein function. This is especially true for disulfide bond formation, which has the potential to mediate extensive yet fully reversible structural and functional changes, rapidly adjusting the protein's activity to the prevailing oxidant levels.
引用
收藏
页码:26489 / 26496
页数:8
相关论文
共 98 条
  • [1] Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv
    Alam, Md. Suhail
    Garg, Saurabh K.
    Agrawal, Pushpa
    [J]. FEBS JOURNAL, 2009, 276 (01) : 76 - 93
  • [2] A small, stable RNA induced by oxidative stress: Role as a pleiotropic regulator and antimutator
    Altuvia, S
    WeinsteinFischer, D
    Zhang, AX
    Postow, L
    Storz, G
    [J]. CELL, 1997, 90 (01) : 43 - 53
  • [3] Iron, oxidative stress and the example of solar ultraviolet A radiation
    Aroun, Asma
    Zhong, Julia Li
    Tyrrell, Rex M.
    Pourzand, Charareh
    [J]. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2012, 11 (01) : 118 - 134
  • [4] Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol -: disulfide status
    Åslund, F
    Zheng, M
    Beckwith, J
    Storz, G
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) : 6161 - 6165
  • [5] IDENTIFICATION OF A PROTEIN REQUIRED FOR DISULFIDE BOND FORMATION INVIVO
    BARDWELL, JCA
    MCGOVERN, K
    BECKWITH, J
    [J]. CELL, 1991, 67 (03) : 581 - 589
  • [6] Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system
    Berndt, Carsten
    Lillig, Christopher Horst
    Holmgren, Arne
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2007, 292 (03): : H1227 - H1236
  • [7] The thermodynamics of thiol sulfenylation
    Billiet, Lionel
    Geerlings, Paul
    Messens, Joris
    Roos, Goedele
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2012, 52 (08) : 1473 - 1485
  • [8] Evolution of amino acid frequencies in proteins over deep time: Inferred order of introduction of amino acids into the genetic code
    Brooks, DJ
    Fresco, JR
    Lesk, AM
    Singh, M
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2002, 19 (10) : 1645 - 1655
  • [9] Kinetics and redox-sensitive oligomerisation reveal negative subunit cooperativity in tryparedoxin peroxidase of Trypanosoma brucei brucei
    Budde, H
    Flohé, L
    Hecht, HJ
    Hofmann, B
    Stehr, M
    Wissing, J
    Lünsdorf, H
    [J]. BIOLOGICAL CHEMISTRY, 2003, 384 (04) : 619 - 633
  • [10] The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2
    Caselli, A
    Marzocchini, R
    Camici, G
    Manao, G
    Moneti, G
    Pieraccini, G
    Ramponi, G
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (49) : 32554 - 32560