Robust Local Structure Visualization for Remote Sensing Image Registration

被引:11
作者
Chen, Jiaxuan [1 ]
Chen, Shuang [1 ]
Liu, Yuyan [1 ]
Chen, Xiaoxian [2 ]
Yang, Yang [1 ]
Zhang, Yungang [1 ]
机构
[1] Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
[2] China Agr Univ, Lab Comp Networks & Informat Secur, Beijing 100089, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature matching; image registration; mismatch removal; remote sensing; visualization descriptor; PHASE CORRELATION METHOD; DEEP LEARNING FRAMEWORK; ALGORITHM;
D O I
10.1109/JSTARS.2021.3050459
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image registration is a fundamental and important task in remote sensing. In this article, we focus on feature-based image registration. Existing attempts often require estimating a transformation model or imposing relaxed geometric constraints to establish reliable feature correspondences. However, a parametric model cannot handle image pairs undergoing complex transformations, and relaxed methods discard a lot of structure information and the results are often coarse. To solve the above issues, we propose a local structure visualization descriptor to preserve the original structure information, and cast the feature matching task into an evaluation of the consensus of visual structure under a convolutional neural network. This strategy can effectively measure the similarity of neighborhood structure for mismatch removal. In summary, our method does not depend on a specific transformation model and can process arbitrary remote sensing images (e.g., different deformations, severe outliers, various rotations, and scaling changes). To demonstrate the robustness of our strategy for image registration, extensive experiments on various real remote sensing images for feature matching are conducted and compared against nine state-of-the-art methods, where our method gives the best performances in most scenarios.
引用
收藏
页码:1895 / 1908
页数:14
相关论文
共 57 条
[1]   Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry [J].
Abdel-Aziz, Y. I. ;
Karara, H. M. .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2015, 81 (02) :103-107
[2]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[3]   MULTIDIMENSIONAL BINARY SEARCH TREES USED FOR ASSOCIATIVE SEARCHING [J].
BENTLEY, JL .
COMMUNICATIONS OF THE ACM, 1975, 18 (09) :509-517
[4]   GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence [J].
Bian, JiaWang ;
Lin, Wen-Yan ;
Matsushita, Yasuyuki ;
Yeung, Sai-Kit ;
Nguyen, Tan-Dat ;
Cheng, Ming-Ming .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2828-2837
[6]  
Bracewell R. N., 1986, FOURIER TRANSFORM IT
[7]   ALGORITHM FOR COMPUTER CONTROL OF A DIGITAL PLOTTER [J].
BRESENHAM, JE .
IBM SYSTEMS JOURNAL, 1965, 4 (01) :25-30
[8]   Learning a similarity metric discriminatively, with application to face verification [J].
Chopra, S ;
Hadsell, R ;
LeCun, Y .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :539-546
[9]  
Chui HL, 2000, PROC CVPR IEEE, P44, DOI 10.1109/CVPR.2000.854733
[10]   Total recall: Automatic query expansion with a generative feature model for object retrieval [J].
Chum, Ondrej ;
Philbin, James ;
Sivic, Josef ;
Isard, Michael ;
Zisserman, Andrew .
2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, :496-+