Proposal for a room-temperature diamond maser

被引:68
作者
Jin, Liang [1 ,2 ]
Pfender, Matthias [3 ]
Aslam, Nabeel [3 ]
Neumann, Philipp [3 ]
Yang, Sen [3 ]
Wrachtrup, Joerg [3 ]
Liu, Ren-Bao [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Ctr Quantum Coherence, Shatin, Hong Kong, Peoples R China
[3] Univ Stuttgart, Inst Phys 3, D-70569 Stuttgart, Germany
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
SPIN; POLARIZATION; DYNAMICS; LASER;
D O I
10.1038/ncomms9251
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (similar to ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (similar to 0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (similar to 5 ms) at room temperature, high optical pumping efficiency (similar to 10(6) s (-1)) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor similar to 5 x 10(4), diamond size similar to 3 x 3 x 0.5 mm(3) and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Waxman, A. ;
Bouchard, L-S. ;
Budker, D. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[2]   Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Santori, C. ;
Fu, K. -M. C. ;
Barclay, P. E. ;
Beausoleil, R. G. ;
Linget, H. ;
Roch, J. F. ;
Treussart, F. ;
Chemerisov, S. ;
Gawlik, W. ;
Budker, D. .
PHYSICAL REVIEW B, 2009, 80 (11)
[3]   A mobile NMR device for measurements of porosity and pore size distributions of drilled core samples [J].
Anferova, S ;
Anferov, V ;
Rata, DG ;
Blümich, B ;
Arnold, J ;
Clauser, C ;
Blümler, P ;
Raich, H .
CONCEPTS IN MAGNETIC RESONANCE PART B-MAGNETIC RESONANCE ENGINEERING, 2004, 23B (01) :26-32
[4]   Nanoscale imaging magnetometry with diamond spins under ambient conditions [J].
Balasubramanian, Gopalakrishnan ;
Chan, I. Y. ;
Kolesov, Roman ;
Al-Hmoud, Mohannad ;
Tisler, Julia ;
Shin, Chang ;
Kim, Changdong ;
Wojcik, Aleksander ;
Hemmer, Philip R. ;
Krueger, Anke ;
Hanke, Tobias ;
Leitenstorfer, Alfred ;
Bratschitsch, Rudolf ;
Jelezko, Fedor ;
Wrachtrup, Joerg .
NATURE, 2008, 455 (7213) :648-U46
[5]   Measurement of the fundamental thermal noise limit in a cryogenic sapphire frequency standard using bimodal maser oscillations [J].
Benmessai, Karim ;
Creedon, Daniel Lloyd ;
Tobar, Michael Edmund ;
Bourgeois, Pierre-Yves ;
Kersale, Yann ;
Giordano, Vincent .
PHYSICAL REVIEW LETTERS, 2008, 100 (23)
[6]   A steady-state superradiant laser with less than one intracavity photon [J].
Bohnet, Justin G. ;
Chen, Zilong ;
Weiner, Joshua M. ;
Meiser, Dominic ;
Holland, Murray J. ;
Thompson, James K. .
NATURE, 2012, 484 (7392) :78-81
[7]  
Clauss R., 2008, DEEP SPACE COMMUNICA
[8]  
Dobrovinskaya ER, 2009, MICRO- OPTO-ELECTRON, P1, DOI 10.1007/978-0-387-85695-7_1
[9]   Development of Halbach magnet for portable NMR device [J].
Dogan, N. ;
Topkaya, R. ;
Subasi, H. ;
Rameev, B. .
INTERNATIONAL CONFERENCE ON SUPERCONDUCTIVITY AND MAGNETISM (ICSM), 2009, 153
[10]   The nitrogen-vacancy colour centre in diamond [J].
Doherty, Marcus W. ;
Manson, Neil B. ;
Delaney, Paul ;
Jelezko, Fedor ;
Wrachtrup, Joerg ;
Hollenberg, Lloyd C. L. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 528 (01) :1-45