Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus

被引:107
作者
Park, Joo Youn [1 ]
Moon, Bo Youn [1 ,2 ,3 ]
Park, Juw Won [4 ]
Thornton, Justin A. [5 ]
Park, Yong Ho [2 ,3 ]
Seo, Keun Seok [1 ]
机构
[1] Mississippi State Univ, Dept Basic Sci, Coll Vet Med, Mississippi State, MS 39762 USA
[2] Seoul Natl Univ, Dept Microbiol, Coll Vet Med, Seoul 151742, South Korea
[3] Seoul Natl Univ, Program Vet Sci BK21, Seoul 151742, South Korea
[4] Univ Louisville, KBRIN, Dept Comp Engn & Comp Sci, Louisville, KY 40208 USA
[5] Mississippi State Univ, Dept Biol Sci, Mississippi State, MS 39762 USA
关键词
VANCOMYCIN; RESISTANCE; RNA; INFECTIONS; GENOMES;
D O I
10.1038/srep44929
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus.
引用
收藏
页数:13
相关论文
共 39 条
[1]  
ABREMSKI K, 1982, J BIOL CHEM, V257, P9658
[2]   New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria [J].
Arnaud, M ;
Chastanet, A ;
Débarbouillé, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (11) :6887-6891
[3]   Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems [J].
Bakhshinejad, Babak ;
Sadeghizadeh, Majid .
EXPERT OPINION ON DRUG DELIVERY, 2014, 11 (10) :1561-1574
[4]   MULTIPLE EFFECTS OF FIS ON INTEGRATION AND THE CONTROL OF LYSOGENY IN PHAGE LAMBDA [J].
BALL, CA ;
JOHNSON, RC .
JOURNAL OF BACTERIOLOGY, 1991, 173 (13) :4032-4038
[5]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[6]   Structure of the bacteriophage T4 long tail fiber receptor-binding tip [J].
Bartual, Sergio G. ;
Otero, Jose M. ;
Garcia-Doval, Carmela ;
Llamas-Saiz, Antonio L. ;
Kahn, Richard ;
Fox, Gavin C. ;
van Raaij, Mark J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (47) :20287-20292
[7]   A CRISPR design for next-generation antimicrobials [J].
Beisel, Chase L. ;
Gomaa, Ahmed A. ;
Barrangou, Rodolphe .
GENOME BIOLOGY, 2014, 15 (11)
[8]   Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials [J].
Bikard, David ;
Euler, Chad W. ;
Jiang, Wenyan ;
Nussenzweig, Philip M. ;
Goldberg, Gregory W. ;
Duportet, Xavier ;
Fischetti, Vincent A. ;
Marraffini, Luciano A. .
NATURE BIOTECHNOLOGY, 2014, 32 (11) :1146-1150
[9]   Antibacterial drug discovery in the resistance era [J].
Brown, Eric D. ;
Wright, Gerard D. .
NATURE, 2016, 529 (7586) :336-343
[10]   Pathogenicity Island-Directed Transfer of Unlinked Chromosomal Virulence Genes [J].
Chen, John ;
Ram, Geeta ;
Penades, Jose R. ;
Brown, Stuart ;
Novick, Richard P. .
MOLECULAR CELL, 2015, 57 (01) :138-149