Fractal and generalized Fokker-Planck equations: description of the characterization of anomalous diffusion in magnetic resonance imaging

被引:20
作者
Fa, Kwok Sau [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, Ave Colombo 5790, BR-87020900 Maringa, Parana, Brazil
关键词
stochastic processes; systems biology; RANDOM-WALKS; MODELS;
D O I
10.1088/1742-5468/aa61c6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Recently, fractal and generalized Fokker-Planck equations have been the subject of considerable interest. In this work, the fractal and generalized Fokker-Planck equations connected with the Langevin equation and continuous time random walk model are considered. Descriptions and applications of these models to the fixed samples of the mouse brain using magnetic resonance imaging (MRI) are discussed.
引用
收藏
页数:11
相关论文
共 37 条
[1]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[2]  
[Anonymous], 1955, HIGHER TRANSCENDENTA
[3]  
[Anonymous], 1996, FOKKER PLANCK EQUATI
[4]  
[Anonymous], 2005, NOISY OSCILLATOR 1 1
[5]  
[Anonymous], 1997, HDB STOCHASTIC METHO
[6]  
[Anonymous], NONLINEAR FOKKERPLAN
[7]   Dynamical correlations [J].
Balucani, U ;
Lee, MH ;
Tognetti, V .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 373 (06) :409-492
[8]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[9]   Time-space fabric underlying anomalous diffusion [J].
Chen, W .
CHAOS SOLITONS & FRACTALS, 2006, 28 (04) :923-929
[10]   Anomalous diffusion modeling by fractal and fractional derivatives [J].
Chen, Wen ;
Sun, Hongguang ;
Zhang, Xiaodi ;
Korosak, Dean .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1754-1758