Multiple zeta values and Euler sums

被引:39
作者
Xu, Ce [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Multiple zeta value; Multiple zeta star value; Multiple harmonic number; Multiple star harmonic number; Euler sum; RIEMANN ZETA; SERIES; DUALITY; INTEGRALS; FORMULAS; NUMBERS;
D O I
10.1016/j.jnt.2017.01.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish some expressions of series involving harmonic numbers and Stirling numbers of the first kind in terms of multiple zeta values, and present some new relationships between multiple zeta values and multiple zeta star values. The relationships obtained allow us to find some nice closed form representations of nonlinear Euler sums through Riemann zeta values and linear sums. Furthermore, we show that the combined sums H (a, b; m, p) := Sigma(a+b=m-1) zeta({p}(a), p +1, {P}(b)) (m is an element of N, p > 1) and H* (a, b; m,p) := Sigma(a+b=m-1) zeta(*) ({P}(a),P + 1, {P}(b)) (m is an element of N, p > 1) are reducible to polynomials in zeta values, and give explicit recurrence formulas. Some interesting (known or new) consequences and illustrative examples are considered. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:443 / 478
页数:36
相关论文
共 40 条
  • [1] [Anonymous], CONT MATH
  • [2] [Anonymous], 1997, Electron. J. Combin.
  • [3] [Anonymous], ARXIV11104875
  • [4] [Anonymous], NOVI COMM ACAD SCI P
  • [5] [Anonymous], ELECT J COMBIN
  • [6] [Anonymous], COMMUN NUMB IN PRESS
  • [7] [Anonymous], 2012, MATH RES LETT
  • [8] Bailey D.H., 1994, Exp. Math, V3, P17, DOI DOI 10.1080/10586458.1994.10504573
  • [9] Blumlein J., 1999, Phys. Rev. D, V60, DOI DOI 10.1103/PHYSREVD.60.014018
  • [10] EXPLICIT EVALUATION OF EULER SUMS
    BORWEIN, D
    BORWEIN, JM
    GIRGENSOHN, R
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 : 277 - 294