Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence

被引:39
|
作者
Xu, Hua-Feng [1 ,2 ]
Zhang, Zhou [1 ]
Qu, Jun [3 ]
Huang, Wei [1 ,2 ]
机构
[1] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Lab Atmospher Phys Chem, Hefei 230031, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Environm Sci & Optoelect Technol, Hefei 230026, Anhui, Peoples R China
[3] Anhui Normal Univ, Dept Phys, Wuhu 241000, Anhui, Peoples R China
来源
OPTICS EXPRESS | 2014年 / 22卷 / 19期
基金
中国国家自然科学基金;
关键词
PARTIALLY COHERENT BEAMS; FLAT-TOPPED BEAMS; ATMOSPHERIC-TURBULENCE; EXPERIMENTAL GENERATION; LIGHT-BEAMS; VORTEX BEAM; FREE-SPACE; SCINTILLATION; STATISTICS;
D O I
10.1364/OE.22.022479
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Based on the extended Huygens-Fresnel principle and second-order moments of the Wigner distribution function (WDF), we have studied the relative root-mean-square (rms) angular width and the propagation factor of cosine-Gaussian-correlated Schell-model (CGSM) beams propagating in non-Kolmogorov turbulence. It has been found that the CGSM beam has advantage over the Gaussian Schell-model (GSM) beam for reducing the turbulence-induced degradation, and this advantage will be more obvious for the beams with larger parameter n and spatial coherence delta or under the condition of stronger fluctuation of turbulence. The CGSM beam with larger parameter n or smaller spatial coherence delta will be less affected by the turbulence. In addition, the effects of the slope-parameter alpha, inner and outer scale and the refractive-index structure constant of the non-Kolmogorov's power spectrum on the propagation factor are also analyzed in detailed. (C) 2014 Optical Society of America
引用
收藏
页码:22479 / 22489
页数:11
相关论文
共 50 条
  • [1] Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence
    Mei, Zhangrong
    Schchepakina, Elena
    Korotkova, Olga
    OPTICS EXPRESS, 2013, 21 (15): : 17512 - 17519
  • [2] Effect of oceanic turbulence on the propagation of cosine-Gaussian-correlated Schell-model beams
    Ding, Chaoliang
    Liao, Lamei
    Wang, Haixia
    Zhang, Yongtao
    Pan, Liuzhan
    JOURNAL OF OPTICS, 2015, 17 (03)
  • [3] Propagation of radially polarized multi-cosine Gaussian Schell-model beams in non-Kolmogorov turbulence
    Tang, Miaomiao
    Zhao, Daomu
    Li, Xinzhong
    Wang, Jingge
    OPTICS COMMUNICATIONS, 2018, 407 : 392 - 397
  • [4] Propagation properties of Gaussian Schell-model array beams in non-Kolmogorov turbulence
    Song, Zhenzhen
    Liu, Zhengjun
    Zhou, Keya
    Sun, Qiongge
    Liu, Shutian
    JOURNAL OF OPTICS, 2016, 18 (10)
  • [5] Diffraction of cosine-Gaussian-correlated Schell-model beams
    Pan, Liuzhan
    Ding, Chaoliang
    Wang, Haixia
    OPTICS EXPRESS, 2014, 22 (10): : 11670 - 11679
  • [6] Propagation factors of multi-sinc Schell-model beams in non-Kolmogorov turbulence
    Song, Zhenzhen
    Liu, Zhengjun
    Zhou, Keya
    Sun, Qiongge
    Liu, Shutian
    OPTICS EXPRESS, 2016, 24 (02): : 1804 - 1813
  • [7] Propagation of a Hermite-cos-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence
    Zhao, Jialu
    Wang, Guiqiu
    Yin, Yan
    Zhong, Haiyang
    Wang, Yaochuan
    Liu, Dajun
    OPTIK, 2021, 241
  • [8] Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence
    Zhou, Yuan
    Yuan, Yangsheng
    Qu, Jun
    Huang, Wei
    OPTICS EXPRESS, 2016, 24 (10): : 10682 - 10693
  • [9] Propagation factor and beam wander of electromagnetic Gaussian Schell-model array beams in non-Kolmogorov turbulence
    Zhang, Biling
    Xu, Yonggen
    Wang, Xiaoyan
    Dan, Youquan
    OSA CONTINUUM, 2019, 2 (01) : 162 - 174
  • [10] Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence
    Wang, Xiaoyang
    Yao, Mingwu
    Qiu, Zhiliang
    Yi, Xiang
    Liu, Zengji
    OPTICS EXPRESS, 2015, 23 (10): : 12508 - 12523