Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence

被引:40
作者
Xu, Hua-Feng [1 ,2 ]
Zhang, Zhou [1 ]
Qu, Jun [3 ]
Huang, Wei [1 ,2 ]
机构
[1] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Lab Atmospher Phys Chem, Hefei 230031, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Environm Sci & Optoelect Technol, Hefei 230026, Anhui, Peoples R China
[3] Anhui Normal Univ, Dept Phys, Wuhu 241000, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
PARTIALLY COHERENT BEAMS; FLAT-TOPPED BEAMS; ATMOSPHERIC-TURBULENCE; EXPERIMENTAL GENERATION; LIGHT-BEAMS; VORTEX BEAM; FREE-SPACE; SCINTILLATION; STATISTICS;
D O I
10.1364/OE.22.022479
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Based on the extended Huygens-Fresnel principle and second-order moments of the Wigner distribution function (WDF), we have studied the relative root-mean-square (rms) angular width and the propagation factor of cosine-Gaussian-correlated Schell-model (CGSM) beams propagating in non-Kolmogorov turbulence. It has been found that the CGSM beam has advantage over the Gaussian Schell-model (GSM) beam for reducing the turbulence-induced degradation, and this advantage will be more obvious for the beams with larger parameter n and spatial coherence delta or under the condition of stronger fluctuation of turbulence. The CGSM beam with larger parameter n or smaller spatial coherence delta will be less affected by the turbulence. In addition, the effects of the slope-parameter alpha, inner and outer scale and the refractive-index structure constant of the non-Kolmogorov's power spectrum on the propagation factor are also analyzed in detailed. (C) 2014 Optical Society of America
引用
收藏
页码:22479 / 22489
页数:11
相关论文
共 50 条
[1]   Ghost imaging with incoherent and partially coherent light radiation [J].
Cai, YJ ;
Zhu, SY .
PHYSICAL REVIEW E, 2005, 71 (05)
[2]   Propagation of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere [J].
Cang, Ji ;
Xiu, Peng ;
Liu, Xu .
OPTICS AND LASER TECHNOLOGY, 2013, 54 :35-41
[3]   Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere [J].
Chen, Rong ;
Liu, Lin ;
Zhu, Shijun ;
Wu, Gaofeng ;
Wang, Fei ;
Cai, Yangjian .
OPTICS EXPRESS, 2014, 22 (02) :1871-1883
[4]   Elliptical Laguerre-Gaussian correlated Schell-model beam [J].
Chen, Yahong ;
Liu, Lin ;
Wang, Fei ;
Zhao, Chengliang ;
Cai, Yangjian .
OPTICS EXPRESS, 2014, 22 (11) :13975-13987
[5]   Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam [J].
Chen, Yahong ;
Cai, Yangjian .
OPTICS LETTERS, 2014, 39 (09) :2549-2552
[6]   Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam [J].
Chen, Yahong ;
Wang, Fei ;
Zhao, Chengliang ;
Cai, Yangjian .
OPTICS EXPRESS, 2014, 22 (05) :5826-5838
[7]   Generation and propagation of a partially coherent vector beam with special correlation functions [J].
Chen, Yahong ;
Wang, Fei ;
Liu, Lin ;
Zhao, Chengliang ;
Cai, Yangjian ;
Korotkova, Olga .
PHYSICAL REVIEW A, 2014, 89 (01)
[8]   Propagation of vector vortex beams through a turbulent atmosphere [J].
Cheng, Wen ;
Haus, Joseph W. ;
Zhan, Qiwen .
OPTICS EXPRESS, 2009, 17 (20) :17829-17836
[9]   Experimental generation of nonuniformly correlated partially coherent light beams [J].
Cui, Shengwei ;
Chen, Ziyang ;
Zhang, Lei ;
Pu, Jixiong .
OPTICS LETTERS, 2013, 38 (22) :4821-4824
[10]   Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere [J].
Dan, Youquan ;
Zhang, Bin .
OPTICS EXPRESS, 2008, 16 (20) :15563-15575