Algorithmic introduction of quantified cuts

被引:21
作者
Hetzl, Stefan [1 ]
Leitsch, Alexander [2 ]
Reis, Giselle [2 ]
Weller, Daniel [1 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
[2] Vienna Univ Technol, Inst Comp Languages, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Proof compression; Cut-introduction; Classical logic; First-order logic; COMPLEXITY;
D O I
10.1016/j.tcs.2014.05.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe a method for inverting Gentzen's cut-elimination in classical first-order logic. Our algorithm is based on first computing a compressed representation of the terms present in the cut-free proof and then cut-formulas that realize such a compression. Finally, a proof using these cut-formulas is constructed. Concerning asymptotic complexity, this method allows an exponential compression of quantifier complexity (the number of quantifier-inferences) of proofs. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 41 条
  • [1] [Anonymous], 1957, J SYMBOLIC LOGIC
  • [2] [Anonymous], ZAPISKI NAUCHNYKH SE
  • [3] [Anonymous], 1939, GRUNDLAGEN MATH
  • [4] On the complexity of Boolean unification
    Baader, F
    [J]. INFORMATION PROCESSING LETTERS, 1998, 67 (04) : 215 - 220
  • [5] Baaz M., 1994, Fundamenta Informaticae, V20, P353
  • [6] Baaz M., 1993, Computer Science Logic. 6th Workshop, CSL '92, P29
  • [7] ON THE COMPLEXITY OF PROOF DESKOLEMIZATION
    Baaz, Matthias
    Hetzl, Stefan
    Weller, Daniel
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2012, 77 (02) : 669 - 686
  • [8] BOOLOS G, 1984, J PHILOS LOGIC, V13, P372
  • [9] Bundy A., 2001, HDB AUTOMATED REASON, P845, DOI DOI 10.1016/B978-044450813-3/50015-1
  • [10] Bundy Alan, 2005, CAMBRIDGE TRACTS THE