An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem

被引:17
作者
Caboussat, A. [1 ]
Glowinski, R. [1 ]
Pons, V. [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
Eigenvalue problems; non-smooth optimization; augmented Lagrangian methods; finite elements methods; bifurcation phenomenon; MONGE-AMPERE EQUATION; MEAN-CURVATURE FLOW; FINITE-ELEMENT; REGULARIZATION; SIMULATION; CONSTANTS; OPERATOR;
D O I
10.1515/JNUM.2009.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we address the numerical solution of a non- smooth eigenvalue problem, which has implications in plasticity theory and image processing. The smallest eigenvalue of the nonsmooth operator under consideration is shown to be the same for all bounded, sufficiently smooth, domains in two space dimensions. Piecewise linear finite elements are used for the discretization of eigenfunctions and eigenvalues. An augmented Lagrangian method is proposed for the computation of the minima of the associated non-convex optimization problem. The convergence of finite element approximations of generalized eigenpairs is investigated. Numerical solutions are presented for the first eigenvalue and eigenfunction. For non-simply connected domains, the augmented Lagrangian method also captures larger eigenvalues as local minima. Bifurcation between the first and second eigenvalues is investigated numerically.
引用
收藏
页码:3 / 26
页数:24
相关论文
共 39 条
[1]   Total variation regularization for image denoising, I. Geometric theory [J].
Allard, William K. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) :1150-1190
[2]  
[Anonymous], 1989, SIAM STUDIES APPL MA
[3]   On the best Sobolev inequality [J].
Aubin, T ;
Li, YY .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (04) :353-387
[4]   Explicit solutions of the eigenvalue problem -div(Du/|Du|) = u in R2 [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (04) :1095-1129
[5]   LARGE DISPLACEMENT CALCULATIONS OF FLEXIBLE PIPELINES BY FINITE-ELEMENT AND NON-LINEAR PROGRAMMING METHODS [J].
BOURGAT, JF ;
DUMAY, JM ;
GLOWINSKI, R .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1980, 1 (01) :34-81
[6]  
Burger M, 2005, LECT NOTES COMPUT SC, V3752, P25
[7]  
Caboussat A, 2009, INT J NUMER ANAL MOD, V6, P402
[8]  
Caboussat A, 2009, INT J NUMER ANAL MOD, V6, P355
[9]  
CARLIER G, 2008, ESAIM MATH MOD UNPUB
[10]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89