Graphitization of Glassy Carbon after Compression at Room Temperature

被引:53
作者
Shiell, T. B. [1 ]
McCulloch, D. G. [2 ,3 ]
McKenzie, D. R. [4 ]
Field, M. R. [3 ]
Haberl, B. [5 ]
Boehler, R. [5 ,6 ]
Cook, B. A. [2 ]
de Tomas, C. [7 ]
Suarez-Martinez, I [7 ]
Marks, N. A. [7 ]
Bradby, J. E. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 2601, Australia
[2] RMIT Univ, Sch Sci, Phys, Melbourne, Vic 3001, Australia
[3] RMIT Univ, RMIT Microscopy & Microanal Facil, Melbourne, Vic 3001, Australia
[4] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[5] Oak Ridge Natl Lab, Neutron Scattering Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA
[6] Carnegie Inst Sci, Geophys Lab, 5251 Branch Rd Northwest, Washington, DC 20015 USA
[7] Curtin Univ, Dept Phys & Astron, Perth, WA 6845, Australia
基金
澳大利亚研究理事会;
关键词
STRESS-INDUCED FORMATION; AMORPHOUS-CARBON; SPECTROSCOPY; DEFORMATION; GRAPHITE; FILMS;
D O I
10.1103/PhysRevLett.120.215701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Glassy carbon is a technologically important material with isotropic properties that is nongraphitizing up to similar to 3000 degrees C and displays complete or "superelastic" recovery from large compression. The pressure limit of these properties is not yet known. Here we use experiments and modeling to show permanent densification, and preferred orientation occurs in glassy carbon loaded to 45 GPa and above, where 45 GPa represents the limit to the superelastic and nongraphitizing properties of the material. The changes are explained by a transformation from its sp(2) rich starting structure to a sp(3) rich phase that reverts to fully sp(2) bonded oriented graphite during pressure release.
引用
收藏
页数:6
相关论文
共 43 条
  • [1] Aherwar A., 2015, AIMS BIOENGINEERING, V3, P1
  • [2] Al Mahmud K. A. H., 2014, CRIT REV SOLID STATE, V40, P2
  • [3] Crystal Structure of Cold Compressed Graphite
    Amsler, Maximilian
    Flores-Livas, Jose A.
    Lehtovaara, Lauri
    Balima, Felix
    Ghasemi, S. Alireza
    Machon, Denis
    Pailhes, Stephane
    Willand, Alexander
    Caliste, Damien
    Botti, Silvana
    San Miguel, Alfonso
    Goedecker, Stefan
    Marques, Miguel A. L.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [4] EELS ANALYSIS OF VACUUM ARC-DEPOSITED DIAMOND-LIKE FILMS
    BERGER, SD
    MCKENZIE, DR
    MARTIN, PJ
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 1988, 57 (06) : 285 - 290
  • [5] STRESS RECRYSTALLIZATION OF GRAPHITE
    BLACKMAN, LC
    UBBELOHDE, AR
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 266 (1324): : 20 - &
  • [6] Chemical and physical properties of carbon as related to brake performance
    Blanco, C
    Bermejo, J
    Marsh, H
    Menendez, R
    [J]. WEAR, 1997, 213 (1-2) : 1 - 12
  • [7] REAL-SPACE DETERMINATION OF ANISOTROPIC ELECTRONIC-STRUCTURE BY ELECTRON-ENERGY LOSS SPECTROSCOPY
    BROWNING, ND
    YUAN, J
    BROWN, LM
    [J]. ULTRAMICROSCOPY, 1991, 38 (3-4) : 291 - 298
  • [8] General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy
    Cançado, LG
    Takai, K
    Enoki, T
    Endo, M
    Kim, YA
    Mizusaki, H
    Jorio, A
    Coelho, LN
    Magalhaes-Paniago, R
    Pimenta, MA
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (16)
  • [9] Nanomechanical and nanotribological properties of carbon-based thin films: A review
    Charitidis, C. A.
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2010, 28 (01) : 51 - 70
  • [10] Vitreous Carbon - A New Form of Carbon
    Cowlard, F. C.
    Lewis, J. C.
    [J]. JOURNAL OF MATERIALS SCIENCE, 1967, 2 (06) : 507 - 512