Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride

被引:90
作者
Huang, Xu [1 ]
Xiao, Xuezhang [1 ]
Zhang, Wei [1 ]
Fan, Xiulin [1 ]
Zhang, Liuting [1 ]
Cheng, Changjun [1 ]
Li, Shouquan [1 ]
Ge, Hongwei [1 ]
Wang, Qidong [1 ]
Chen, Lixin [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
SORPTION PROPERTIES; DEHYDROGENATION PROPERTIES; DESORPTION PROPERTIES; MG; KINETICS; NANO; NANOCOMPOSITES; PERFORMANCE; TI; ENHANCEMENT;
D O I
10.1039/c6cp07852d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnesium hydride (MgH2) exhibits long-term stability and has recently been developed as a safe alternative to store hydrogen in the solid state, due to its high capacity of 7.6 wt% H-2 and low cost compared to other metal hydrides. However, the high activation energy and poor kinetics of MgH2 lead to inadequate hydrogen storage properties, resulting in low energy efficiency. Nano-catalysis is deemed to be the most effective strategy in improving the kinetics performance of hydrogen storage materials. In this work, robust and efficient architectures of carbon-wrapped transition metal (Co/C, Ni/C) nanoparticles (8-16 nm) were prepared and used as catalysts in the MgH2 system via ball milling to improve its de/rehydrogenation kinetics. Between the two kinds of nano-catalysts, the Ni/C nanoparticles exhibit a better catalytic efficiency. MgH2 doped with 6% Ni/C (MgH2-6% Ni/C) exhibits a peak dehydrogenation temperature of 275.7 1C, which is 142.7, 54.2 and 32.5 degrees C lower than that of commercial MgH2, milled MgH2 and MgH2 doped with 6% Co/C (MgH2-6% Co/C), respectively. MgH2 doped with 6% Ni/C can release about 6.1 wt% H-2 at 250 1C. More importantly, the dehydrogenated MgH2-6% Ni/C is even able to uptake 5.0 wt% H-2 at 100 degrees C within 20 s. Moreover, a cycling test of MgH2 doped with 8% Ni/C demonstrates its excellent hydrogen absorption/desorption stability with respect to both capacity (up to 6.5 wt%) and kinetics (within 8 min at 275 degrees C for dehydrogenation and within 10 s at 200 1C for rehydrogenation). Mechanistic research reveals that the in situ formed Mg2Ni and Mg2NiH4 nanoparticles can be regarded as advanced catalytically active species in the MgH2-Ni/C system. Meanwhile, the carbon attached around the surface of transition metal nanoparticles can successfully inhibit the aggregation of the catalysts and achieve the steadily, prompting de/rehydrogenation during the subsequent cycling process. The intrinsic catalytic effects and the uniform distributions of Mg2Ni and Mg2NiH4 result in a favorable catalytic efficiency and cycling stability. Nano-catalysts with this kind of morphology can also be applied to other metal hydrides to improve their kinetics performance and cycling stability.
引用
收藏
页码:4019 / 4029
页数:11
相关论文
共 77 条
[1]   Reduced Enthalpy of Metal Hydride Formation for Mg-Ti Nanocomposites Produced by Spark Discharge Generation [J].
Anastasopol, Anca ;
Pfeiffer, Tobias V. ;
Middelkoop, Joost ;
Lafont, Ugo ;
Canales-Perez, Roger J. ;
Schmidt-Ott, Andreas ;
Mulder, Fokko M. ;
Eijt, Stephan W. H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (21) :7891-7900
[2]  
[Anonymous], J NANOMATER
[3]   Synthesis of Mg2Cu nanoparticles on carbon supports with enhanced hydrogen sorption kinetics [J].
Au, Yuen S. ;
Ponthieu, Marine ;
van Zwienen, Rien ;
Zlotea, Claudia ;
Cuevas, Fermin ;
de Jong, Krijn P. ;
de Jongh, Petra E. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (34) :9983-9991
[4]   The catalytic reactions in the Cu-Li-Mg-H high capacity hydrogen storage system [J].
Braga, M. H. ;
El-Azab, A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (42) :23012-23025
[5]   Hydrogen storage and phase transformations in Mg-Pd nanoparticles [J].
Callini, E. ;
Pasquini, L. ;
Rude, L. H. ;
Nielsen, T. K. ;
Jensen, T. R. ;
Bonetti, E. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
[6]   Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism [J].
Cui, Jie ;
Liu, Jiangwen ;
Wang, Hui ;
Ouyang, Liuzhang ;
Sun, Dalin ;
Zhu, Min ;
Yao, Xiangdong .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (25) :9645-9655
[7]   Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts [J].
Cui, Jie ;
Wang, Hui ;
Liu, Jiangwen ;
Ouyang, Liuzhang ;
Zhang, Qingan ;
Sun, Dalin ;
Yao, Xiangdong ;
Zhu, Min .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (18) :5603-5611
[8]   Hydrogen storage: the remaining scientific and technological challenges [J].
Felderhoff, Michael ;
Weidenthaler, Claudia ;
von Helmolt, Rittmar ;
Eberle, Ulrich .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (21) :2643-2653
[9]   Hydriding/dehydriding properties of magnesium-ZrCr2 composites [J].
Fernández, JF ;
Bodega, J ;
Sánchez, CR .
JOURNAL OF ALLOYS AND COMPOUNDS, 2003, 356 :343-347
[10]   Hydrogen sorption properties of Mg-1 wt.% Ni-0.2 wt.% Pd prepared by reactive milling [J].
Gutfleisch, O ;
Dal Toè, S ;
Herrich, M ;
Handstein, A ;
Pratt, A .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 404 :413-416