Multi-peak solutions for super-critical elliptic problems in domains with small holes

被引:63
作者
del Pino, M
Felmer, P
Musso, M
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, UMR2071 CNRS, Santiago, Chile
关键词
supercritical exponent; solution with multiple double-spikes;
D O I
10.1006/jdeq.2001.4098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the slightly super-critical elliptic problem [GRAPHICS] where epsilon > 0 is a small parameter and Omega subset of R-N is a bounded domain with smooth boundary. Assuming that the domain exhibits k sufficiently small holes, multiple solutions are constructed by gluing double-spike patterns located near each of the holes. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:511 / 540
页数:30
相关论文
共 16 条
[1]   ON A VARIATIONAL PROBLEM WITH LACK OF COMPACTNESS - THE TOPOLOGICAL EFFECT OF THE CRITICAL-POINTS AT INFINITY [J].
BAHRI, A ;
LI, YY ;
REY, O .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (01) :67-93
[2]  
Bahri A., 1989, RES NOTES MATH, V182
[3]  
Brezis H., 1986, COMM PURE APPL MATH, V39
[4]  
BREZIS H, 1989, PARTIAL DIFFERENTIAL
[5]  
CORON JM, 1984, CR ACAD SCI I-MATH, V299, P209
[6]  
DELPINO M, 2 BUBBLE SOLUTIONS S
[7]   GLOBAL SEVERAL-PARAMETER BIFURCATION AND CONTINUATION THEOREMS - A UNIFIED APPROACH VIA COMPLEMENTING MAPS [J].
FITZPATRICK, PM ;
MASSABO, I ;
PEJSACHOWICZ, J .
MATHEMATISCHE ANNALEN, 1983, 263 (01) :61-73
[8]  
HAN ZC, 1991, ANN I H POINCARE-AN, V8, P159
[9]  
Kazdan J., 1983, COMMUN PUR APPL MATH, V28, P349