FUSION RULES FOR Z2-ORBIFOLDS OF AFFINE AND PARAFERMION VERTEX OPERATOR ALGEBRAS

被引:4
作者
Jiang, Cuipo [1 ]
Wang, Qing [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
MODULAR-INVARIANCE; REPRESENTATIONS;
D O I
10.1007/s11856-020-2082-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is about the orbifold theory of affine and parafermion vertex operator algebras. It is known that the parafermion vertex operator algebra K(sl(2), k) associated to the integrable highest weight modules for the affine Kac-Moody algebra A(1)((1)) is the building block of the general parafermion vertex operator K(g, k) for any finite-dimensional simple Lie algebra g and any positive integer k. We first classify the irreducible modules of Z(2)-orbifold of the simple affine vertex operator algebra of type A(1)((1)) and determine their fusion rules. Then we study the representations of the Z(2)-orbifold of the parafermion vertex operator algebra K(sl(2), k). The quantum dimensions, and more technically, fusion rules for the Z(2)-orbifold of the parafermion vertex operator algebra K(sl(2), k) are completely determined.
引用
收藏
页码:837 / 887
页数:51
相关论文
共 39 条
[1]   Fusion rules for the vertex operator algebras M(1)+ and VL+ [J].
Abe, T ;
Dong, CY ;
Li, HS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (01) :171-219
[2]   Fusion rules for the charge conjugation orbifold [J].
Abe, T .
JOURNAL OF ALGEBRA, 2001, 242 (02) :624-655
[3]  
Abe T, 2007, MATH Z, V255, P755, DOI 10.1007/s00209-006-0048-5
[4]   THE IRREDUCIBLE MODULES AND FUSION RULES FOR THE PARAFERMION VERTEX OPERATOR ALGEBRAS [J].
Ai, Chunrui ;
Dong, Chongying ;
Jiao, Xiangyu ;
Ren, Li .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (08) :5963-5981
[5]  
Al-Ali M, 2017, COMMUN MATH PHYS, V353, P1129, DOI 10.1007/s00220-016-2812-7
[6]  
[Anonymous], 1988, Advanced. Studies in Pure Math.
[7]   PARAFERMION VERTEX OPERATOR ALGEBRAS AND W-ALGEBRAS [J].
Arakawa, Tomoyuki ;
Lam, Ching Hung ;
Yamada, Hiromichi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (06) :4277-4301
[8]  
Arakawa T, 2017, COMMUN MATH PHYS, V355, P339, DOI 10.1007/s00220-017-2901-2
[9]   Zhu's algebra, C2-algebra and C2-cofiniteness of parafermion vertex operator algebras [J].
Arakawa, Tomoyuki ;
Lam, Ching Hung ;
Yamada, Hiromichi .
ADVANCES IN MATHEMATICS, 2014, 264 :261-295
[10]  
Carnahan S., 2016, Regularity of fixed-point vertex operator sub-algebras