Cryogenic Q-factor measurement of optical substrates for optimization of gravitational wave detectors

被引:6
|
作者
Nietzsche, S.
Nawrodt, R.
Zimmer, A.
Schnabel, R.
Vodel, W.
Seidel, P.
机构
[1] Univ Jena, Inst Festkorperphys, D-07743 Jena, Germany
[2] Leibniz Univ Hannover, Max Planck Inst Gravitationsphys, D-30167 Hannover, Germany
来源
SUPERCONDUCTOR SCIENCE & TECHNOLOGY | 2006年 / 19卷 / 05期
关键词
D O I
10.1088/0953-2048/19/5/S27
中图分类号
O59 [应用物理学];
学科分类号
摘要
Future generations of gravitational wave interferometers are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of end mirrors and beam splitters that occurs in the optical substrates as well as in the dielectric coatings. A possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical quality factor Q, and maximizing the eigenfrequencies of the substrate. We present experimental details of a new cryogenic apparatus that is suitable for the measurement of the temperature-dependent Q-factor of reflective, transmissive as well as nano-structured grating optics down to 5 K. In particular, the SQUID-based and the optical interferometric approaches to the measurement of the amplitude of vibrating test bodies are compared and the method of ring-down recording is described.
引用
收藏
页码:S293 / S296
页数:4
相关论文
共 50 条
  • [21] Tunable plasmonic substrates with ultrahigh Q-factor resonances
    Hamid T. Chorsi
    Youngkyu Lee
    Andrea Alù
    John X. J. Zhang
    Scientific Reports, 7
  • [22] Optical-amplifier noise-figure measurement by Q-factor analysis
    Kweon, GI
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 43 (05) : 714 - 721
  • [23] NEW SYSTEM FOR MICROWAVE Q-FACTOR MEASUREMENT
    CULLEN, AL
    DAVIES, JA
    IEE JOURNAL ON MICROWAVES OPTICS AND ACOUSTICS, 1978, 2 (03): : 77 - 84
  • [24] ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors
    Utina, A.
    Amato, A.
    Arends, J.
    Arina, C.
    de Baar, M.
    Baars, M.
    Baer, P.
    van Bakel, N.
    Beaumont, W.
    Bertolini, A.
    van Beuzekom, M.
    Biersteker, S.
    Binetti, A.
    ter Brake, H. J. M.
    Bruno, G.
    Bryant, J.
    Bulten, H. J.
    Busch, L.
    Cebeci, P.
    Collette, C.
    Cooper, S.
    Cornelissen, R.
    Cuijpers, P.
    van Dael, M.
    Danilishin, S.
    Diksha, D.
    van Doesburg, S.
    Doets, M.
    Elsinga, R.
    Erends, V
    van Erps, J.
    Freise, A.
    Frenaij, H.
    Garcia, R.
    Giesberts, M.
    Grohmann, S.
    Van Haevermaet, H.
    Heijnen, S.
    van Heijningen, J., V
    Hennes, E.
    Hennig, J-S
    Hennig, M.
    Hertog, T.
    Hild, S.
    Hoffmann, H-D
    Hoft, G.
    Hopman, M.
    Hoyland, D.
    Iandolo, G. A.
    Ietswaard, C.
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (21)
  • [25] Q-FACTOR MEASUREMENT WITH A SCALAR NETWORK ANALYZER
    KAJFEZ, D
    IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 1995, 142 (05) : 369 - 372
  • [26] Q-factor measurement of nonlinear superconducting resonators
    Rao, XS
    Ong, CK
    Feng, YP
    ELECTRONICS LETTERS, 2000, 36 (03) : 271 - 273
  • [27] AUTOMATIC-MEASUREMENT OF RESONATOR Q-FACTOR
    MILLER, NDJ
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1978, 11 (03): : 185 - 186
  • [28] A SIMPLE METHOD FOR MEASUREMENT OF VARACTOR Q-FACTOR
    SMITH, RB
    RADIO AND ELECTRONIC ENGINEER, 1968, 35 (04): : 245 - +
  • [29] Soft Q-factor in Optical Communication Systems
    Yoshida, Tsuyoshi
    IEICE COMMUNICATIONS EXPRESS, 2022, 11 (12): : 871 - 876
  • [30] High mechanical Q-factor measurements on calcium fluoride at cryogenic temperatures
    Nawrodt, R.
    Zimmer, A.
    Koettig, T.
    Nietzsche, S.
    Thuerk, M.
    Vodel, W.
    Seidel, P.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2007, 38 (01): : 53 - 59