Genomic Prediction for Tuberculosis Resistance in Dairy Cattle

被引:38
|
作者
Tsairidou, Smaragda [1 ,2 ]
Woolliams, John A. [1 ,2 ]
Allen, Adrian R. [3 ]
Skuce, Robin A. [3 ]
McBride, Stewart H. [3 ]
Wright, David M. [4 ]
Bermingham, Mairead L. [1 ,2 ]
Pong-Wong, Ricardo [1 ,2 ]
Matika, Oswald [1 ,2 ]
McDowell, Stanley W. J. [3 ]
Glass, Elizabeth J. [1 ,2 ]
Bishop, Stephen C. [1 ,2 ]
机构
[1] Univ Edinburgh, Roslin Inst, Edinburgh EH8 9YL, Midlothian, Scotland
[2] Univ Edinburgh, RDVS, Edinburgh EH8 9YL, Midlothian, Scotland
[3] Agrifood & Biosci Inst, Belfast, Antrim, North Ireland
[4] Queens Univ Belfast, Sch Biol Sci, Belfast, Antrim, North Ireland
来源
PLOS ONE | 2014年 / 9卷 / 05期
基金
英国生物技术与生命科学研究理事会;
关键词
BOVINE TUBERCULOSIS; MYCOBACTERIUM-BOVIS; GENETIC-RESISTANCE; INBREEDING TRENDS; INFECTION; SELECTION; IMPACT; ACCURACY; DISEASE; RISK;
D O I
10.1371/journal.pone.0096728
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The increasing prevalence of bovine tuberculosis (bTB) in the UK and the limitations of the currently available diagnostic and control methods require the development of complementary approaches to assist in the sustainable control of the disease. One potential approach is the identification of animals that are genetically more resistant to bTB, to enable breeding of animals with enhanced resistance. This paper focuses on prediction of resistance to bTB. We explore estimation of direct genomic estimated breeding values (DGVs) for bTB resistance in UK dairy cattle, using dense SNP chip data, and test these genomic predictions for situations when disease phenotypes are not available on selection candidates. Methodology/Principal Findings: We estimated DGVs using genomic best linear unbiased prediction methodology, and assessed their predictive accuracies with a cross validation procedure and receiver operator characteristic (ROC) curves. Furthermore, these results were compared with theoretical expectations for prediction accuracy and area-under-the-ROC-curve (AUC). The dataset comprised 1151 Holstein-Friesian cows (bTB cases or controls). All individuals (592 cases and 559 controls) were genotyped for 727,252 loci (Illumina Bead Chip). The estimated observed heritability of bTB resistance was 0.23 +/- 0.06 (0.34 on the liability scale) and five-fold cross validation, replicated six times, provided a prediction accuracy of 0.33 (95% C.I.: 0.26, 0.40). ROC curves, and the resulting AUC, gave a probability of 0.58, averaged across six replicates, of correctly classifying cows as diseased or as healthy based on SNP chip genotype alone using these data. Conclusions/Significance: These results provide a first step in the investigation of the potential feasibility of genomic selection for bTB resistance using SNP data. Specifically, they demonstrate that genomic selection is possible, even in populations with no pedigree data and on animals lacking bTB phenotypes. However, a larger training population will be required to improve prediction accuracies.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Impact of Marker Pruning Strategies Based on Different Measurements of Marker Distance on Genomic Prediction in Dairy Cattle
    Ren, Duanyang
    Teng, Jinyan
    Diao, Shuqi
    Lin, Qing
    Li, Jiaqi
    Zhang, Zhe
    ANIMALS, 2021, 11 (07):
  • [22] Natural resistance to tuberculosis infection in cattle
    Gonzalez Ruiz, Sara
    Canto Alarcon, Germinal Jorge
    Rodriguez-Hernandez, Elba
    Flores Villalba, Susana
    Roman Ponce, Sergio I.
    Milian Suazo, Feliciano
    REVISTA MEXICANA DE CIENCIAS PECUARIAS, 2018, 9 (02) : 328 - 345
  • [23] Genomic predictions for crossbred dairy cattle
    VanRaden, P. M.
    Tooker, M. E.
    Chud, T. C. S.
    Norman, H. D.
    Megonigal, J. H., Jr.
    Haagen, I. W.
    Wiggans, G. R.
    JOURNAL OF DAIRY SCIENCE, 2020, 103 (02) : 1620 - 1631
  • [24] Genomic regions underlying susceptibility to bovine tuberculosis in Holstein-Friesian cattle
    Raphaka, Kethusegile
    Matika, Oswald
    Sanchez-Molano, Enrique
    Mrode, Raphael
    Coffey, Mike Peter
    Riggio, Valentina
    Glass, Elizabeth Janet
    Woolliams, John Arthur
    Bishop, Stephen Christopher
    Banos, Georgios
    BMC GENETICS, 2017, 18 : 27
  • [25] The use of genomic data and imputation methods in dairy cattle breeding
    Klimova, Anita
    Kasna, Eva
    Machova, Karolina
    Brzakova, Michaela
    Pribyl, Josef
    Vostry, Lubos
    CZECH JOURNAL OF ANIMAL SCIENCE, 2020, 65 (12) : 445 - 453
  • [26] Use of female information in dairy cattle genomic breeding programs
    Mc Hugh, N.
    Meuwissen, T. H. E.
    Cromie, A. R.
    Sonesson, A. K.
    JOURNAL OF DAIRY SCIENCE, 2011, 94 (08) : 4109 - 4118
  • [27] Comparing deregression methods for genomic prediction of test-day traits in dairy cattle
    de Oliveira, H. R.
    Silva, F. F.
    Brito, L. F.
    Guarini, A. R.
    Jamrozik, J.
    Schenkel, F. S.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2018, 135 (02) : 97 - 106
  • [28] Prevalence and risk factors of bovine tuberculosis in dairy cattle in Eritrea
    Ghebremariam, Michael K.
    Rutten, V. P. M. G.
    Vernooij, J. C. M.
    Uqbazghi, K.
    Tesfaalem, T.
    Butsuamlak, T.
    Idris, A. M.
    Nielen, M.
    Michel, A. L.
    BMC VETERINARY RESEARCH, 2016, 12
  • [29] Bovine tuberculosis: diagnosis in dairy cattle through the association of analyzes
    Dametto, Leonardo Luiz
    dos Santos, Ezequiel Davi
    Santos, Luciana R.
    Dickel, Elci L.
    PESQUISA VETERINARIA BRASILEIRA, 2020, 40 (01): : 12 - 16
  • [30] International genomic evaluation methods for dairy cattle
    VanRaden, Paul M.
    Sullivan, Peter G.
    GENETICS SELECTION EVOLUTION, 2010, 42