Genomic Prediction for Tuberculosis Resistance in Dairy Cattle

被引:38
|
作者
Tsairidou, Smaragda [1 ,2 ]
Woolliams, John A. [1 ,2 ]
Allen, Adrian R. [3 ]
Skuce, Robin A. [3 ]
McBride, Stewart H. [3 ]
Wright, David M. [4 ]
Bermingham, Mairead L. [1 ,2 ]
Pong-Wong, Ricardo [1 ,2 ]
Matika, Oswald [1 ,2 ]
McDowell, Stanley W. J. [3 ]
Glass, Elizabeth J. [1 ,2 ]
Bishop, Stephen C. [1 ,2 ]
机构
[1] Univ Edinburgh, Roslin Inst, Edinburgh EH8 9YL, Midlothian, Scotland
[2] Univ Edinburgh, RDVS, Edinburgh EH8 9YL, Midlothian, Scotland
[3] Agrifood & Biosci Inst, Belfast, Antrim, North Ireland
[4] Queens Univ Belfast, Sch Biol Sci, Belfast, Antrim, North Ireland
来源
PLOS ONE | 2014年 / 9卷 / 05期
基金
英国生物技术与生命科学研究理事会;
关键词
BOVINE TUBERCULOSIS; MYCOBACTERIUM-BOVIS; GENETIC-RESISTANCE; INBREEDING TRENDS; INFECTION; SELECTION; IMPACT; ACCURACY; DISEASE; RISK;
D O I
10.1371/journal.pone.0096728
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The increasing prevalence of bovine tuberculosis (bTB) in the UK and the limitations of the currently available diagnostic and control methods require the development of complementary approaches to assist in the sustainable control of the disease. One potential approach is the identification of animals that are genetically more resistant to bTB, to enable breeding of animals with enhanced resistance. This paper focuses on prediction of resistance to bTB. We explore estimation of direct genomic estimated breeding values (DGVs) for bTB resistance in UK dairy cattle, using dense SNP chip data, and test these genomic predictions for situations when disease phenotypes are not available on selection candidates. Methodology/Principal Findings: We estimated DGVs using genomic best linear unbiased prediction methodology, and assessed their predictive accuracies with a cross validation procedure and receiver operator characteristic (ROC) curves. Furthermore, these results were compared with theoretical expectations for prediction accuracy and area-under-the-ROC-curve (AUC). The dataset comprised 1151 Holstein-Friesian cows (bTB cases or controls). All individuals (592 cases and 559 controls) were genotyped for 727,252 loci (Illumina Bead Chip). The estimated observed heritability of bTB resistance was 0.23 +/- 0.06 (0.34 on the liability scale) and five-fold cross validation, replicated six times, provided a prediction accuracy of 0.33 (95% C.I.: 0.26, 0.40). ROC curves, and the resulting AUC, gave a probability of 0.58, averaged across six replicates, of correctly classifying cows as diseased or as healthy based on SNP chip genotype alone using these data. Conclusions/Significance: These results provide a first step in the investigation of the potential feasibility of genomic selection for bTB resistance using SNP data. Specifically, they demonstrate that genomic selection is possible, even in populations with no pedigree data and on animals lacking bTB phenotypes. However, a larger training population will be required to improve prediction accuracies.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Improving Genomic Prediction of Crossbred and Purebred Dairy Cattle
    Khansefid, Majid
    Goddard, Michael E.
    Haile-Mariam, Mekonnen
    Konstantinov, Kon, V
    Schrooten, Chris
    de Jong, Gerben
    Jewell, Erica G.
    O'Connor, Erin
    Pryce, Jennie E.
    Daetwyler, Hans D.
    MacLeod, Iona M.
    FRONTIERS IN GENETICS, 2020, 11
  • [2] Optimizing genomic prediction for Australian Red dairy cattle
    van den Berg, I.
    MacLeod, I. M.
    Reich, C. M.
    Breen, E. J.
    Pryce, J. E.
    JOURNAL OF DAIRY SCIENCE, 2020, 103 (07) : 6276 - 6298
  • [3] Genetic evaluation for bovine tuberculosis resistance in dairy cattle
    Banos, G.
    Winters, M.
    Mrode, R.
    Mitchell, A. P.
    Bishop, S. C.
    Woolliams, J. A.
    Coffey, M. P.
    JOURNAL OF DAIRY SCIENCE, 2017, 100 (02) : 1272 - 1281
  • [4] Effects of preselection of genotyped animals on reliability and bias of genomic prediction in dairy cattle
    Togashi, Kenji
    Adachi, Kazunori
    Kurogi, Kazuhito
    Yasumori, Takanori
    Tokunaka, Kouichi
    Ogino, Atsushi
    Miyazaki, Yoshiyuki
    Watanabe, Toshio
    Takahashi, Tsutomu
    Moribe, Kimihiro
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2019, 32 (02): : 159 - 169
  • [5] Across-country genomic prediction of bull fertility in Jersey dairy cattle
    Rezende, Fernanda M.
    Haile-Mariam, Mekonnen
    Pryce, Jennie E.
    Penagaricano, Francisco
    JOURNAL OF DAIRY SCIENCE, 2020, 103 (12) : 11618 - 11627
  • [6] Genomic prediction of bull fertility in US Jersey dairy cattle
    Rezende, Fernanda M.
    Pablo Nani, Juan
    Penagaricano, Francisco
    JOURNAL OF DAIRY SCIENCE, 2019, 102 (04) : 3230 - 3240
  • [7] Genetic Diversity of Cameroon Cattle and a Putative Genomic Map for Resistance to Bovine Tuberculosis
    Callaby, Rebecca
    Kelly, Robert
    Mazeri, Stella
    Egbe, Franklyn
    Benedictus, Lindert
    Clark, Emily
    Doeschl-Wilson, Andrea
    Bronsvoort, Barend
    Salavati, Mazdak
    Muwonge, Adrian
    FRONTIERS IN GENETICS, 2020, 11
  • [8] An analysis of effects of heterozygosity in dairy cattle for bovine tuberculosis resistance
    Tsairidou, S.
    Allen, A. R.
    Pong-Wong, R.
    McBride, S. H.
    Wright, D. M.
    Matika, O.
    Pooley, C. M.
    McDowell, S. W. J.
    Glass, E. J.
    Skuce, R. A.
    Bishop, S. C.
    Woolliams, J. A.
    ANIMAL GENETICS, 2018, 49 (02) : 103 - 109
  • [9] Opportunities for genomic prediction for fertility using endocrine and classical fertility traits in dairy cattle
    Tenghe, A. M. M.
    Berglund, B.
    Wall, E.
    Veerkamp, R. F.
    de Koning, D. J.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 (09) : 3645 - 3654
  • [10] Genomic prediction for tick resistance in Braford and Hereford cattle
    Cardoso, F. F.
    Gomes, C. C. G.
    Sollero, B. P.
    Oliveira, M. M.
    Roso, V. M.
    Piccoli, M. L.
    Higa, R. H.
    Yokoo, M. J.
    Caetano, A. R.
    Aguilar, I.
    JOURNAL OF ANIMAL SCIENCE, 2015, 93 (06) : 2693 - 2705