Semantic Segmentation of 3D Point Cloud to Virtually Manipulate Real Living Space

被引:9
|
作者
Ishikawa, Yuki [1 ]
Hachiuma, Ryo [1 ]
Ienaga, Naoto [1 ]
Kuno, Wakaba [1 ]
Sugiura, Yuta [1 ]
Saito, Hideo [1 ]
机构
[1] Keio Univ, Yokohama, Kanagawa, Japan
关键词
furniture arrangement; semantic segmentation; virtual reality;
D O I
10.1109/apmar.2019.8709156
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a method for the virtual manipulation of real living space using semantic segmentation of a 3D point cloud captured in the real world. We applied PointNet to segment each piece of furniture from the point cloud of a real indoor environment captured by moving a RGBD camera. For semantic segmentation, we focused on local geometric information not used in PointNet, and we proposed a method to refine the class probability of labels attached to each point in PointNet's output. The effectiveness of our method was experimentally confirmed. We then created 3D models of real-world furniture using a point cloud with corrected labels, and we virtually manipulated real living space using Dollhouse VR, a layout system.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 50 条
  • [1] Real-Time Semantic Segmentation of 3D Point Cloud for Autonomous Driving
    Kang, Dongwan
    Wong, Anthony
    Lee, Banghyon
    Kim, Jungha
    ELECTRONICS, 2021, 10 (16)
  • [2] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF 3D POINT CLOUD
    Malinverni, E. S.
    Pierdicca, R.
    Paolanti, M.
    Martini, M.
    Morbidoni, C.
    Matrone, F.
    Lingua, A.
    27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 735 - 742
  • [3] 3D point cloud semantic segmentation: state of the art and challenges
    Wang Y.
    Hu Y.
    Kong Q.
    Zeng H.
    Zhang L.
    Fan B.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (10): : 1653 - 1664
  • [4] A survey on weakly supervised 3D point cloud semantic segmentation
    Wang, Jingyi
    Liu, Yu
    Tan, Hanlin
    Zhang, Maojun
    IET COMPUTER VISION, 2024, 18 (03) : 329 - 342
  • [5] Few-shot 3D Point Cloud Semantic Segmentation
    Zhao, Na
    Chua, Tat-Seng
    Lee, Gim Hee
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8869 - 8878
  • [6] Semantic Context Encoding for Accurate 3D Point Cloud Segmentation
    Liu, Hao
    Guo, Yulan
    Ma, Yanni
    Lei, Yinjie
    Wen, Gongjian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2045 - 2055
  • [7] Semantic and Geometric Labeling for Enhanced 3D Point Cloud Segmentation
    Perez-Perez, Yeritza
    Golparvar-Fard, Mani
    El-Rayes, Khaled
    CONSTRUCTION RESEARCH CONGRESS 2016: OLD AND NEW CONSTRUCTION TECHNOLOGIES CONVERGE IN HISTORIC SAN JUAN, 2016, : 2542 - 2552
  • [8] Transformer Enhanced Hierarchical 3D Point Cloud Semantic Segmentation
    Liu, Yaohua
    Ma, Yue
    Xu, Min
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [9] Investigate Indistinguishable Points in Semantic Segmentation of 3D Point Cloud
    Xu, Mingye
    Zhou, Zhipeng
    Zhang, Junhao
    Qiao, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3047 - 3055
  • [10] Novel Class Discovery for 3D Point Cloud Semantic Segmentation
    Riz, Luigi
    Saltori, Cristiano
    Ricci, Elisa
    Poiesi, Fabio
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9393 - 9402