Color screening potential at finite density in two-flavor lattice QCD with Wilson fermions

被引:22
作者
Takahashi, Junichi [1 ]
Nagata, Keitaro [2 ]
Saito, Takuya [3 ]
Nakamura, Atsushi [4 ]
Sasaki, Takahiro [1 ]
Kouno, Hiroaki [5 ]
Yahiro, Masanobu [1 ]
机构
[1] Kyushu Univ, Grad Sch Sci, Dept Phys, Fukuoka 8128581, Japan
[2] High Energy Accelerator Res Org KEK, KEK Theory Ctr, Tsukuba, Ibaraki 3050801, Japan
[3] Kochi Univ, Integrated Informat Ctr, Kochi 7808520, Japan
[4] Hiroshima Univ, Res Inst Informat Sci & Educ, Higashihiroshima 7398527, Japan
[5] Saga Univ, Dept Phys, Saga 8408502, Japan
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 11期
关键词
QUARK FREE-ENERGIES;
D O I
10.1103/PhysRevD.88.114504
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the chemical-potential (mu) dependence of static-quark free energies in both the real and imaginary mu regions, performing lattice QCD simulations at imaginary mu and extrapolating the results to the real-mu region with analytic continuation. Lattice QCD calculations are done on a 16(3) x 4 lattice with the clover-improved two-flavor Wilson fermion action and the renormalization-group-improved Iwasaki gauge action. Static-quark potentials are evaluated from the Polyakov-loop correlation functions in the deconfinement phase. To perform the analytic continuation, the potential calculated at imaginary mu = i mu(I) is expanded into a Taylor expansion series of i mu(I)/T up to fourth order and the pure imaginary variable i mu(I)/T is replaced by the real one mu(R)/T. At real mu, the fourth-order term sizably weakens the mu dependence of the potential. At long distance, all of the color-singlet and -nonsinglet potentials tend to twice the single-quark free energy, indicating that the interactions between static quarks are fully color screened for finite mu. For both real and imaginary mu, the color-singlet q (q) over bar and the color-antitriplet qq interactions are attractive, whereas the color-octet q (q) over bar and the color-sextet qq interactions are repulsive. The attractive interactions have a stronger mu/T dependence than the repulsive interactions. The color-Debye screening mass is extracted from the color-singlet potential at imaginary mu, and the mass is extrapolated to real mu by analytic continuation. The screening mass thus obtained has a stronger mu dependence than the prediction of hard-thermal-loop perturbation theory at both real and imaginary mu.
引用
收藏
页数:15
相关论文
共 34 条
[1]  
Ali Khan A., 2000, PHYS REV D, V63
[2]   Finite temperature QCD with two flavors of nonperturbatively improved Wilson fermions -: art. no. 114504 [J].
Bornyakov, VG ;
Chernodub, MN ;
Ichie, H ;
Koma, Y ;
Mori, Y ;
Nakamura, Y ;
Polikarpov, MI ;
Schierholz, G ;
Slavnov, AA ;
Stüben, H ;
Suzuki, T ;
Uvarov, PV ;
Veselov, AI .
PHYSICAL REVIEW D, 2005, 71 (11)
[3]   Free energy of QCD at high temperature [J].
Braaten, E ;
Nieto, A .
PHYSICAL REVIEW D, 1996, 53 (06) :3421-3437
[4]   Order of the Roberge-Weiss endpoint (finite size transition) in QCD [J].
D'Elia, Massimo ;
Sanfilippo, Francesco .
PHYSICAL REVIEW D, 2009, 80 (11)
[5]   Thermodynamics of two flavor QCD from imaginary chemical potentials [J].
D'Elia, Massimo ;
Sanfilippo, Francesco .
PHYSICAL REVIEW D, 2009, 80 (01)
[6]   The QCD phase diagram for small densities from imaginary chemical potential [J].
de Forcrand, P ;
Philipsen, O .
NUCLEAR PHYSICS B, 2002, 642 (1-2) :290-306
[7]  
de Forcrand P, 2009, P SCI LAT2009, V2009
[8]   Constraining the QCD Phase Diagram by Tricritical Lines at Imaginary Chemical Potential [J].
de Forcrand, Philippe ;
Philipsen, Owe .
PHYSICAL REVIEW LETTERS, 2010, 105 (15)
[9]   Screening of heavy quark free energies at finite temperature and non-zero baryon chemical potential [J].
Doering, M. ;
Ejiri, S. ;
Kaczmarek, O. ;
Karsch, F. ;
Laermann, E. .
EUROPEAN PHYSICAL JOURNAL C, 2006, 46 (01) :179-189
[10]   Equation of state and heavy-quark free energy at finite temperature and density in two flavor lattice QCD with Wilson quark action [J].
Ejiri, S. ;
Maezawa, Y. ;
Ukita, N. ;
Aoki, S. ;
Hatsuda, T. ;
Ishii, N. ;
Kanaya, K. ;
Umeda, T. .
PHYSICAL REVIEW D, 2010, 82 (01)