The Cauchy problem for the equation of the Burgers hierarchy

被引:7
作者
Kudryashov, Nikolai A. [1 ]
Sinelshchikov, Dmitry I. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Dept Appl Math, Moscow 115409, Russia
关键词
Burgers hierarchy; Burgers equation; Sharma-Tasso-Olver equation; Cauchy problem; Cole-Hopf transformation; EVOLUTION-EQUATIONS; WAVES;
D O I
10.1007/s11071-013-1149-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Cauchy problem for the equation of the Burgers hierarchy is considered. The Green function for the associated linear problem is constructed. Using the Cole-Hopf transformation the solution of the Cauchy problem for the equation of the Burgers hierarchy is given. Several particular cases are considered and discussed.
引用
收藏
页码:561 / 569
页数:9
相关论文
共 36 条
[11]   THE PARTIAL DIFFERENTIAL EQUATION UT+UUX=MU-XX [J].
HOPF, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1950, 3 (03) :201-230
[12]   Lagrangian approach to evolution equations: Symmetries and conservation laws [J].
Ibragimov, NH ;
Kolsrud, T .
NONLINEAR DYNAMICS, 2004, 36 (01) :29-40
[13]   Soliton solutions of Burgers equations and perturbed Burgers equation [J].
Jawad, Anwar Ja'afar Mohamad ;
Petkovic, Marko D. ;
Biswas, Anjan .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (11) :3370-3377
[14]   Time-domain theory of forerunners [J].
Karlsson, A ;
Rikte, S .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (02) :487-502
[15]   Linearizability of the perturbed Burgers equation [J].
Kraenkel, RA ;
Pereira, JG ;
Neto, ECD .
PHYSICAL REVIEW E, 1998, 58 (02) :2526-2530
[16]  
KRISTENSSON G, 2002, SCATTERING, P277
[17]  
Kudryashov N.A., 2010, Methods of Nonlinear Mathematical Physics
[18]  
Kudryashov N.A., 2013, VEST NRNU MEPHI, V2, P142
[19]   An extended equation for the description of nonlinear waves in a liquid with gas bubbles [J].
Kudryashov, Nikolai A. ;
Sinelshchikov, Dmitry I. .
WAVE MOTION, 2013, 50 (03) :351-362
[20]   Self-similar solutions of the Burgers hierarchy [J].
Kudryashov, Nikolai A. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (05) :1990-1993