The Cauchy problem for the equation of the Burgers hierarchy

被引:7
作者
Kudryashov, Nikolai A. [1 ]
Sinelshchikov, Dmitry I. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Dept Appl Math, Moscow 115409, Russia
关键词
Burgers hierarchy; Burgers equation; Sharma-Tasso-Olver equation; Cauchy problem; Cole-Hopf transformation; EVOLUTION-EQUATIONS; WAVES;
D O I
10.1007/s11071-013-1149-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Cauchy problem for the equation of the Burgers hierarchy is considered. The Green function for the associated linear problem is constructed. Using the Cole-Hopf transformation the solution of the Cauchy problem for the equation of the Burgers hierarchy is given. Several particular cases are considered and discussed.
引用
收藏
页码:561 / 569
页数:9
相关论文
共 36 条
[1]  
[Anonymous], 2010, Handbook of Mathematical Functions
[2]   1-Soliton solution of the generalized Burgers equation with generalized evolution [J].
Biswas, Anjan ;
Triki, Houria ;
Hayat, T. ;
Aldossary, Omar M. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (24) :10289-10294
[3]   Estimates for solutions of a low-viscosity kick-forced generalized Burgers equation [J].
Boritchev, Alexandre .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (02) :253-268
[4]   On the asymptotic behaviour of Laplace-type multiple integral solutions of linear differential equations [J].
Breen, S ;
Wood, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 171 (1-2) :103-112
[5]  
Burgers J.M., 1948, ADV APPL MECH, V1, P171
[6]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[7]   On the asymptotic linearization of acoustic waves [J].
Fokas, Athanassios S. ;
Luo, Laihan .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (12) :6403-6445
[8]  
FOKAS T, 1996, CONT MATH, V200, P85
[9]   Application of the nonlocal Darcy law to the propagation of nonlinear thermoelastic waves in fluid saturated porous media [J].
Garra, R. ;
Salusti, E. .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 250 :52-57
[10]   A Volterra series approach to the frequency domain analysis of non-linear viscous Burgers' equation [J].
Guo, L. Z. ;
Guo, Y. Z. ;
Billings, S. A. ;
Coca, D. ;
Lang, Z. Q. .
NONLINEAR DYNAMICS, 2012, 70 (03) :1753-1765